A NOTE ON BAZILEVIČ FUNCTIONS

YONG CHAN KIM AND TOSHIYUKI SUGAWA

Abstract. We provide a few sufficient conditions for a normalized analytic function in the unit disk to be a Bazilevič function of prescribed type.

1. Introduction

Throughout the paper, \mathscr{A} denotes the class of analytic functions f in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ normalized so that $f(0)=0$ and $f^{\prime}(0)=1$.

Let α and β be real numbers with $\alpha>0$ and set $\gamma=\alpha+\mathrm{i} \beta$. An $f \in \mathscr{A}$ is called a Bazilevič function of type (α, β) if

$$
\begin{align*}
f(z) & =\left[\gamma \int_{0}^{z} g(\zeta)^{\alpha} h(\zeta) \zeta^{\mathrm{i} \beta-1} \mathrm{~d} \zeta\right]^{1 / \gamma} \tag{1.1}\\
& =z\left[\gamma \int_{0}^{1}\left(\frac{g(t z)}{t z}\right)^{\alpha} h(t z) t^{\gamma-1} \mathrm{~d} t\right]^{1 / \gamma}
\end{align*}
$$

for a starlike (univalent) function g in \mathscr{A} and an analytic function h with $h(0)=1$ satisfying $\operatorname{Re}\left(\mathrm{e}^{\mathrm{i} \lambda} h\right)>0$ in \mathbb{D} for some $\lambda \in \mathbb{R}$. Here and hereafter, $t^{\gamma-1}=\mathrm{e}^{(\gamma-1) \log t}$ with $\log t \in(-\infty, 0)$ for $0<t<1$ and, for a non-vanishing analytic function G with $G(0)=1$, any power $G^{\delta}, \delta \in \mathbb{C}$, will be understood as $\exp (\delta \log G)$, where $\log G$ means the analytic branch in \mathbb{D} with $\log G(0)=0$. We denote by $\mathscr{B}(\alpha, \beta)$ the class of Bazilevič functions of type (α, β). If we specify the real number λ in the above definition, we denote by $\mathscr{B}_{\lambda}(\alpha, \beta)$ the corresponding subclass of $\mathscr{B}(\alpha, \beta)$.

Let $\mathscr{S}, \mathscr{S}^{*}, \mathscr{K}, \mathscr{C}$, and $\mathscr{S}_{\mathrm{p}}(\lambda),-\pi / 2<\lambda<\pi / 2$, denote the subclasses of \mathscr{A} of functions univalent, starlike, convex, close-to-convex, and λ-spirallike, respectively. (For these classes, see [3] for instance, though the notation is not same as here.) It is well known that the inclusion relations $\mathscr{K} \subset \mathscr{S}^{*} \subset \mathscr{C} \subset \mathscr{S}$ are valid. For $\lambda \in \mathbb{R}$, we also denote by \mathscr{P}_{λ} the class of analytic functions h with $h(0)=1$ and $\operatorname{Re}\left(\mathrm{e}^{\mathrm{i} \lambda} h\right)>0$ in \mathbb{D}. Note that \mathscr{P}_{0} is known as the Carathéodory class.

[^0]Let $\alpha>0, \beta \in \mathbb{R}$ and $-\pi / 2<\lambda<\pi / 2$. In view of (1.1), for $f \in \mathscr{A}$, we readily see that $f \in \mathscr{B}_{\lambda}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left[\mathrm{e}^{\left.\mathrm{i} \lambda \frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{g(z)}\right)^{\alpha}\left(\frac{f(z)}{z}\right)^{\mathrm{i} \beta}\right]>0.000 .}\right. \tag{1.2}
\end{equation*}
$$

for some $g \in \mathscr{S}^{*}$. In this way, the definition of $\mathscr{B}(\alpha, \beta)$ can be extended to the case when $\alpha \geq 0$ naturally. By the above description, we have $\mathscr{B}_{0}(0,0)=\mathscr{S}^{*}, \mathscr{B}_{\lambda}(0,0)=\mathscr{S}_{\mathrm{p}}(\lambda)$ and $\mathscr{B}(1,0)=\mathscr{C}$.

Bazilevič [1] showed that $\mathscr{B}(\alpha, \beta) \subset \mathscr{S}$ for $\alpha>0, \beta \in \mathbb{R}$. Later, Sheil-Small [5] extended it to the case $\alpha \geq 0$ and gave a geometric characterization for $\mathscr{B}(\alpha, \beta)$. So far, Bazilevič functions form the largest known class in \mathscr{S} which has concrete expressions. It is, however, not easy to study them because the expression is somewhat complicated.

In this paper, we give a few sufficient conditions for a function in \mathscr{A} to belong to a class of Bazilevič functions. Let $-\pi / 2<\lambda<\pi / 2$ and set $\zeta=\mathrm{e}^{\mathrm{i} \lambda}$. We now define the slit domain U_{λ} by

$$
U_{\lambda}=\mathbb{C} \backslash\left\{\mathrm{i} y: y \geq A_{\lambda} \text { or } y \leq-1 / A_{\lambda}\right\}, \quad A_{\lambda}=\frac{\cos \lambda}{1+\sin \lambda}
$$

Note that U_{λ} is starlike with respect to the origin. In order to state our result, we also introduce the notation

$$
P[\gamma, f](z)=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(\gamma-1) \frac{z f^{\prime}(z)}{f(z)}
$$

for $\gamma \in \mathbb{C}$ and $f \in \mathscr{A}$.
Theorem 1. Let $\alpha>0, \beta \in \mathbb{R},-\pi / 2<\lambda<\pi / 2$ and $f \in \mathscr{A}$. Suppose that

$$
\begin{equation*}
P[\alpha+\mathrm{i} \beta, f](z)-\alpha p(z)-\mathrm{i} \beta \in U_{\lambda}, \quad z \in \mathbb{D} \tag{1.3}
\end{equation*}
$$

holds true for some $p \in \mathscr{P}_{0}$. Then $f \in \mathscr{B}_{\lambda}(\alpha, \beta)$.
We have, in particular, the following consequence.
Corollary. Let $\alpha>0, \beta \in \mathbb{R}$ and $f \in \mathscr{A}$. Suppose that

$$
\operatorname{Re} P[\alpha+\mathrm{i} \beta, f](z)>0, \quad z \in \mathbb{D}
$$

Then $f \in \mathscr{B}_{\lambda}(\alpha, \beta)$ for every $\lambda \in(-\pi / 2, \pi / 2)$.
Indeed, under the assumption of the corollary, $p:=(P[\alpha+\mathrm{i} \beta, f]-\mathrm{i} \beta) / \alpha$ belongs to \mathscr{P}_{0}. Thus, the assumption of Theorem 1 is satisfied for all λ and the claim follows.

Remark 1. If $\beta=0$, the condition $\operatorname{Re} P[\alpha, f]>0$ means that f is $(1 / \alpha)$-convex (cf. [3, p. 10]). We note that Sakaguchi [4] obtained the stronger result that the condition $\operatorname{Re} P[\gamma, f]>-1 / 2$ in \mathbb{D} for some $\gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma>-1 / 2$ is enough to ensure the univalence of f.

Our second result gives a way of constructing many Bazilevič functions from several known functions.

Theorem 2. Let m be a positive integer, $\alpha_{1}, \ldots, \alpha_{m} \in(0,+\infty), \beta \in \mathbb{R}$ and set $\gamma=$ $\alpha_{1}+\cdots+\alpha_{m}+\mathrm{i} \beta$. If $h \in \mathscr{P}_{\lambda}$ for some $\lambda \in \mathbb{R}$ and $g_{1}, \ldots, g_{m} \in \mathscr{S}^{*}$, then the function f defined by

$$
f(z)=\left[\gamma \int_{0}^{z} g_{1}(\zeta)^{\alpha_{1}} \ldots g_{m}(\zeta)^{\alpha_{m}} h(\zeta) \zeta^{\mathrm{i} \beta-1} \mathrm{~d} \zeta\right]^{1 / \gamma}, \quad z \in \mathbb{D}
$$

belongs to $\mathscr{B}_{\lambda}\left(\alpha_{1}+\cdots+\alpha_{m}, \beta\right)$.

2. Preliminaries

For analytic functions g and h in \mathbb{D}, g is said to be subordinate to h if there exists an analytic function ω in \mathbb{D} such that

$$
\omega(0)=0, \quad|\omega(z)|<1 \quad \text { and } \quad g(z)=h(\omega(z)) \quad(z \in \mathbb{D}) .
$$

This subordination will be denoted by $g \prec h$ or, conventionally, $g(z) \prec h(z)$. In particular, when h is univalent in $\mathbb{D}, g \prec h$ if and only if

$$
g(0)=h(0) \quad \text { and } \quad g(\mathbb{D}) \subset h(\mathbb{D}) .
$$

The following result is a key ingredient of the proof of Theorem 1.
Lemma 3 ([3, Cor. 3.1d.1]). Let φ be a non-vanishing analytic function in \mathbb{D} such that $\varphi(0)=1$ and $z \varphi^{\prime}(z) / \varphi(z)$ is starlike. Suppose that a non-vanishing analytic function h in \mathbb{D} with $h(0)=1$ satisfies

$$
\frac{z h^{\prime}(z)}{h(z)} \prec \frac{z \varphi^{\prime}(z)}{\varphi(z)} .
$$

Then $h \prec \varphi$.
It is convenient to translate the condition (1.2) into one in terms of the quantity $P[\gamma, f]$ for the present aim.

Lemma 4. Let $\alpha>0, \beta \in \mathbb{R}, \lambda \in(-\pi / 2, \pi / 2), f \in \mathscr{A}$ and set $\gamma=\alpha+\mathrm{i} \beta$. Then $f \in \mathscr{B}_{\lambda}(\alpha, \beta)$ if and only if

$$
P[\gamma, f]=\alpha p+\mathrm{i} \beta+\frac{z h^{\prime}}{h}
$$

for some $p \in \mathscr{P}_{0}$ and $h \in \mathscr{P}_{\lambda}$.

Proof. First assume that f is given by (1.1). Then

$$
z f(z)^{\gamma-1} f^{\prime}(z)=g(z)^{\alpha} h(z) z^{\mathrm{i} \beta} .
$$

Taking logarithmic derivatives of both sides and multiplying with z, we obtain the relation

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(\gamma-1) \frac{z f^{\prime}(z)}{f(z)}=\alpha \frac{z g^{\prime}(z)}{g(z)}+\frac{z h^{\prime}(z)}{h(z)}+\mathrm{i} \beta .
$$

Since $p=z g^{\prime} / g \in \mathscr{P}_{0}$, we have the required condition. We can easily trace back the above procedure by taking $g \in \mathscr{S}^{*}$ so that $p=z g^{\prime} / g$.

3. Proof of theorems

First, we prove the following lemma for the Möbius transformation

$$
\psi_{\lambda}(z)=\frac{1+\bar{\zeta} z}{1-\zeta z}=\frac{1+\mathrm{e}^{-\mathrm{i} \lambda} z}{1-\mathrm{e}^{\mathrm{i} \lambda} z}
$$

Lemma 5. Let $\lambda \in(-\pi / 2, \pi / 2)$. Then the above ψ_{λ} maps the unit disk \mathbb{D} conformally onto the half-plane $\operatorname{Re}\left(\mathrm{e}^{\mathrm{i} \lambda} w\right)>0$. Moreover, the function $Q_{\lambda}(z)=z \psi_{\lambda}^{\prime}(z) / \psi_{\lambda}(z)$ maps \mathbb{D} conformally onto the domain U_{λ}.

Proof. For brevity, we set $\psi=\psi_{\lambda}$ and $Q=Q_{\lambda}$ for a while. Since $\psi(-\zeta)=0, \psi(\bar{\zeta})=\infty$ and $\psi(\mathrm{i})=\mathrm{i} \bar{\zeta}$, the image of $\partial \mathbb{D}$ under ψ is the line $\operatorname{Re}(\zeta w)=0$. Thus, we see that ψ satisfies $\psi(0)=1$ and maps the unit disk conformally onto the half-plane $\operatorname{Re}\left(\mathrm{e}^{\mathrm{i} \lambda} w\right)>0$.

We next consider the function Q. Since

$$
Q(z)=\frac{2 z \cos \lambda}{(1+\bar{\zeta} z)(1-\zeta z)}
$$

we have the expression

$$
\frac{z Q^{\prime}(z)}{Q(z)}=1+\frac{\zeta z}{1-\zeta z}+\frac{-\bar{\zeta} z}{1+\bar{\zeta} z}
$$

Since $\operatorname{Re}[z /(1-z)]>-1 / 2$ for $|z|<1$, we see that $\operatorname{Re}\left(z Q^{\prime}(z) / Q(z)\right)>0$, equivalently, Q is a starlike univalent function in \mathbb{D}.

Finally, for $z=\mathrm{e}^{\mathrm{i} \theta}$, we have

$$
Q(z)=\frac{2 \cos \lambda}{\bar{z}-z+\bar{\zeta}-\zeta}=\frac{i \cos \lambda}{\sin \theta+\sin \lambda} .
$$

Since

$$
-1+\sin \lambda \leq \sin \theta+\sin \lambda \leq 1+\sin \lambda,
$$

the boundary values of Q form the set

$$
\{\mathrm{i} y: y \geq \cos \lambda /(1+\sin \lambda)\} \cup\{\infty\} \cup\{\mathrm{i} y: y \leq-\cos \lambda /(1-\sin \lambda)\} .
$$

Therefore, Q maps \mathbb{D} onto the domain U_{λ} as required. The proof is now complete.

The function Q_{λ} is a variant of the so-called "open door mapping" (see [3, §2.5]).
Since $\psi_{\lambda}(0)=1$, we observe that $\varphi \in \mathscr{P}_{\lambda}$ if and only if $\varphi \prec \psi_{\lambda}$. Hence we obtain the proof of Theorem 1 as follows:

Proof of Theorem 1. Let $\lambda \in(-\pi / 2, \pi / 2)$ and suppose that $f \in \mathscr{A}$ satisfies (1.3) for some $p \in \mathscr{P}_{0}$. Take a function $g \in \mathscr{S}^{*}$ so that $z g^{\prime} / g=p$. If we put

$$
h=\left(\frac{z f^{\prime}}{f}\right)\left(\frac{f}{g}\right)^{\alpha}\left(\frac{f}{z}\right)^{\mathrm{i} \beta}
$$

then the same computation as in the proof of Lemma 4 gives the relation

$$
\frac{z h^{\prime}}{h}=P[\alpha+\mathrm{i} \beta, f]-\alpha p-\mathrm{i} \beta
$$

Thus, by the assumption and Lemma 5 , we have $h(z) \neq 0$ for $z \in \mathbb{D}$ and

$$
\frac{z h^{\prime}}{h} \prec Q_{\lambda}=\frac{z \psi_{\lambda}^{\prime}}{\psi_{\lambda}} .
$$

Now it follows from Lemma 3 that $h \prec \psi_{\lambda}$, i.e., $h \in \mathscr{P}_{\lambda}$. Hence Lemma 4 implies that $f \in \mathscr{B}_{\lambda}(\alpha, \beta)$.

In order to prove Theorem 2, we need the following simple observation.
Lemma 6. Let $\mu_{1}, \ldots, \mu_{m} \in(0,1)$ with $\mu_{1}+\cdots+\mu_{m}=1$ and $g_{1}, \ldots, g_{m} \in \mathscr{S}^{*}$. Then the function $g \in \mathscr{A}$ defined by

$$
g(z)=z\left(\frac{g_{1}(z)}{z}\right)^{\mu_{1}} \ldots\left(\frac{g_{m}(z)}{z}\right)^{\mu_{m}}, \quad z \in \mathbb{D}
$$

belongs to \mathscr{S}^{*}.
Proof. By taking the logarithmic derivative of g and multiplying with z, we have

$$
\frac{z g^{\prime}(z)}{g(z)}=\mu_{1} \frac{z g_{1}^{\prime}(z)}{g_{1}(z)}+\cdots+\mu_{m} \frac{z g_{m}^{\prime}(z)}{g_{m}(z)}
$$

Since $\operatorname{Re}\left\{z g_{j}^{\prime}(z) / g_{j}(z)\right\}>0$ for each j, we conclude that $\operatorname{Re}\left\{z g^{\prime}(z) / g(z)\right\}>0$.
Remark 2. For a convex subdomain V of $\mathbb{C} \backslash\{0\}$ with $1 \in V$, we let $\mathscr{S}^{*}(V)=\{f \in \mathscr{A}$: $\left.z f^{\prime}(z) / f(z) \in V(z \in \mathbb{D})\right\}$. (For instance, if we choose the half-planes $\operatorname{Re} w>\alpha(\geq 0)$ and $\operatorname{Re}\left(\mathrm{e}^{\mathrm{i} \lambda} w\right)>0$ and the sector $|\arg w|<\pi \alpha / 2$ as V, then we have the classes of functions which are starlike of order α, λ-spirallike, and strongly starlike of order α, respectively.) Then, the above proof tells us that $g \in \mathscr{S}^{*}(V)$ whenever $g_{1}, \ldots, g_{m} \in \mathscr{S}^{*}(V)$.
Remark 3. It is well known that, for $g, k \in \mathscr{A}$ with $g(z)=z k^{\prime}(z)$, the condition $g \in \mathscr{S}^{*}$ is equivalent to the condition $k \in \mathscr{K}$. Through this transformation, we understand that the above lemma turns to the known fact that the class \mathscr{K} is convex in the sense of Hornich operations (see Cima and Pfaltzgraff [2, Theorem 6.1]).

Finally, as an immediate consequence of the above lemma, we can prove Theorem 2.

Proof of Theorem 2. By letting $\mu_{j}=\alpha_{j} /\left(\alpha_{1}+\cdots+\alpha_{m}\right)$ and g be as in Lemma 6, we see that $g \in \mathscr{S}^{*}$ by Lemma 6 . Now if we put $\alpha=\alpha_{1}+\cdots+\alpha_{m}$ in the expression (1.1), we have the following expression

$$
f(z)=\left[\gamma \int_{0}^{z} g_{1}(\zeta)^{\alpha_{1}} \ldots g_{m}(\zeta)^{\alpha_{m}} h(\zeta) \zeta^{\mathrm{i} \beta-1} \mathrm{~d} \zeta\right]^{1 / \gamma}=\left[\gamma \int_{0}^{z} g(\zeta)^{\alpha} h(\zeta) \zeta^{\mathrm{i} \beta-1} \mathrm{~d} \zeta\right]^{1 / \gamma}
$$

Hence, under the assumptions of Theorem 2, we see that f belongs to $\mathscr{B}_{\lambda}(\alpha, \beta)=\mathscr{B}_{\lambda}\left(\alpha_{1}+\right.$ $\left.\cdots+\alpha_{m}, \beta\right)$.

References

1. I. E. Bazilevič, On a case of integrability in quadratures of the Löwner-Kufarev equation (Russian), Mat. Sb. 37 (1955), 471-476.
2. J. A. Cima and J. A. Pfaltzgraff, A Banach space of locally univalent functions, Michigan Math. J. 17 (1970), 321-334.
3. S. S. Miller and P. T. Mocanu, Differential subordinations. Theory and applications, Marcel Dekker, Inc., New York, 2000.
4. K. Sakaguchi, A note on p-valent functions, J. Math. Soc. Japan 14 (1962), 312-321.
5. T. Sheil-Small, On Bazilevič functions, Quart. J. Math. Oxford (2) 23 (1972), 135-142.

Department of Mathematics Education, Yeungnam University, 214-1 Daedong Gyongsan 712-749, Korea

E-mail address: kimyc@yumail.ac.kr
Department of Mathematics, Graduate School of Science, Hiroshima University, HigashiHiroshima, 739-8526 Japan

E-mail address: sugawa@math.sci.hiroshima-u.ac.jp

[^0]: Date: March 6, 2007, File: yck-sugawa_BF0703.tex.
 2000 Mathematics Subject Classification. Primary 30C45; Secondary 30C80.
 Key words and phrases. Bazilevič function, convex function.
 The first author was supported by Yeungnam University. The second author was partially supported by the JSPS Grant-in-Aid for Scientific Research (B), 17340039.

