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YONG CHAN KIM AND TOSHIYUKI SUGAWA

Abstract. We provide a few sufficient conditions for a normalized analytic function in
the unit disk to be a Bazilevič function of prescribed type.

1. Introduction

Throughout the paper, A denotes the class of analytic functions f in the unit disk
D = {z ∈ C : |z| < 1} normalized so that f(0) = 0 and f ′(0) = 1.

Let α and β be real numbers with α > 0 and set γ = α + iβ. An f ∈ A is called a
Bazilevič function of type (α, β) if

f(z) =

[
γ

∫ z

0

g(ζ)αh(ζ)ζ iβ−1dζ

]1/γ

(1.1)

= z

[
γ

∫ 1

0

(
g(tz)

tz

)α

h(tz)tγ−1dt

]1/γ

for a starlike (univalent) function g in A and an analytic function h with h(0) = 1
satisfying Re (eiλh) > 0 in D for some λ ∈ R. Here and hereafter, tγ−1 = e(γ−1) log t with
log t ∈ (−∞, 0) for 0 < t < 1 and, for a non-vanishing analytic function G with G(0) = 1,
any power Gδ, δ ∈ C, will be understood as exp(δ logG), where logG means the analytic
branch in D with logG(0) = 0. We denote by B(α, β) the class of Bazilevič functions of
type (α, β). If we specify the real number λ in the above definition, we denote by Bλ(α, β)
the corresponding subclass of B(α, β).

Let S ,S ∗,K ,C , and Sp(λ),−π/2 < λ < π/2, denote the subclasses of A of func-
tions univalent, starlike, convex, close-to-convex, and λ-spirallike, respectively. (For these
classes, see [3] for instance, though the notation is not same as here.) It is well known
that the inclusion relations K ⊂ S ∗ ⊂ C ⊂ S are valid. For λ ∈ R, we also denote by
Pλ the class of analytic functions h with h(0) = 1 and Re (eiλh) > 0 in D. Note that P0

is known as the Carathéodory class.
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Let α > 0, β ∈ R and −π/2 < λ < π/2. In view of (1.1), for f ∈ A , we readily see that
f ∈ Bλ(α, β) if and only if

(1.2) Re

[
eiλ zf

′(z)

f(z)

(
f(z)

g(z)

)α (
f(z)

z

)iβ
]
> 0

for some g ∈ S ∗. In this way, the definition of B(α, β) can be extended to the case when
α ≥ 0 naturally. By the above description, we have B0(0, 0) = S ∗,Bλ(0, 0) = Sp(λ)
and B(1, 0) = C .

Bazilevič [1] showed that B(α, β) ⊂ S for α > 0, β ∈ R. Later, Sheil-Small [5] extended
it to the case α ≥ 0 and gave a geometric characterization for B(α, β). So far, Bazilevič
functions form the largest known class in S which has concrete expressions. It is, however,
not easy to study them because the expression is somewhat complicated.

In this paper, we give a few sufficient conditions for a function in A to belong to a
class of Bazilevič functions. Let −π/2 < λ < π/2 and set ζ = eiλ. We now define the slit
domain Uλ by

Uλ = C \ {iy : y ≥ Aλ or y ≤ −1/Aλ}, Aλ =
cosλ

1 + sinλ
.

Note that Uλ is starlike with respect to the origin. In order to state our result, we also
introduce the notation

P [γ, f ](z) = 1 +
zf ′′(z)

f ′(z)
+ (γ − 1)

zf ′(z)

f(z)

for γ ∈ C and f ∈ A .

Theorem 1. Let α > 0, β ∈ R,−π/2 < λ < π/2 and f ∈ A . Suppose that

(1.3) P [α+ iβ, f ](z)− αp(z)− iβ ∈ Uλ, z ∈ D,
holds true for some p ∈ P0. Then f ∈ Bλ(α, β).

We have, in particular, the following consequence.

Corollary. Let α > 0, β ∈ R and f ∈ A . Suppose that

ReP [α+ iβ, f ](z) > 0, z ∈ D.
Then f ∈ Bλ(α, β) for every λ ∈ (−π/2, π/2).

Indeed, under the assumption of the corollary, p := (P [α + iβ, f ] − iβ)/α belongs to
P0. Thus, the assumption of Theorem 1 is satisfied for all λ and the claim follows.

Remark 1. If β = 0, the condition ReP [α, f ] > 0 means that f is (1/α)-convex (cf. [3,
p. 10]). We note that Sakaguchi [4] obtained the stronger result that the condition
ReP [γ, f ] > −1/2 in D for some γ ∈ C with Re γ > −1/2 is enough to ensure the
univalence of f.

Our second result gives a way of constructing many Bazilevič functions from several
known functions.
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Theorem 2. Let m be a positive integer, α1, . . . , αm ∈ (0,+∞), β ∈ R and set γ =
α1 + · · ·+ αm + iβ. If h ∈ Pλ for some λ ∈ R and g1, . . . , gm ∈ S ∗, then the function f
defined by

f(z) =

[
γ

∫ z

0

g1(ζ)
α1 . . . gm(ζ)αmh(ζ)ζ iβ−1dζ

]1/γ

, z ∈ D,

belongs to Bλ(α1 + · · ·+ αm, β).

2. Preliminaries

For analytic functions g and h in D, g is said to be subordinate to h if there exists an
analytic function ω in D such that

ω(0) = 0, |ω(z)| < 1 and g(z) = h(ω(z)) (z ∈ D).

This subordination will be denoted by g ≺ h or, conventionally, g(z) ≺ h(z). In particular,
when h is univalent in D, g ≺ h if and only if

g(0) = h(0) and g(D) ⊂ h(D).

The following result is a key ingredient of the proof of Theorem 1.

Lemma 3 ([3, Cor. 3.1d.1]). Let ϕ be a non-vanishing analytic function in D such that
ϕ(0) = 1 and zϕ′(z)/ϕ(z) is starlike. Suppose that a non-vanishing analytic function h
in D with h(0) = 1 satisfies

zh′(z)

h(z)
≺ zϕ′(z)

ϕ(z)
.

Then h ≺ ϕ.

It is convenient to translate the condition (1.2) into one in terms of the quantity P [γ, f ]
for the present aim.

Lemma 4. Let α > 0, β ∈ R, λ ∈ (−π/2, π/2), f ∈ A and set γ = α + iβ. Then
f ∈ Bλ(α, β) if and only if

P [γ, f ] = αp+ iβ +
zh′

h
for some p ∈ P0 and h ∈ Pλ.

Proof. First assume that f is given by (1.1). Then

zf(z)γ−1f ′(z) = g(z)αh(z)ziβ.

Taking logarithmic derivatives of both sides and multiplying with z, we obtain the relation

1 +
zf ′′(z)

f ′(z)
+ (γ − 1)

zf ′(z)

f(z)
= α

zg′(z)

g(z)
+
zh′(z)

h(z)
+ iβ.

Since p = zg′/g ∈ P0, we have the required condition. We can easily trace back the
above procedure by taking g ∈ S ∗ so that p = zg′/g. �
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3. Proof of theorems

First, we prove the following lemma for the Möbius transformation

ψλ(z) =
1 + ζ̄z

1− ζz
=

1 + e−iλz

1− eiλz
.

Lemma 5. Let λ ∈ (−π/2, π/2). Then the above ψλ maps the unit disk D conformally
onto the half-plane Re (eiλw) > 0. Moreover, the function Qλ(z) = zψ′

λ(z)/ψλ(z) maps D
conformally onto the domain Uλ.

Proof. For brevity, we set ψ = ψλ and Q = Qλ for a while. Since ψ(−ζ) = 0, ψ(ζ̄) = ∞
and ψ(i) = iζ̄ , the image of ∂D under ψ is the line Re (ζw) = 0. Thus, we see that ψ
satisfies ψ(0) = 1 and maps the unit disk conformally onto the half-plane Re (eiλw) > 0.

We next consider the function Q. Since

Q(z) =
2z cosλ

(1 + ζ̄z)(1− ζz)
,

we have the expression
zQ′(z)

Q(z)
= 1 +

ζz

1− ζz
+

−ζ̄z
1 + ζ̄z

.

Since Re [z/(1 − z)] > −1/2 for |z| < 1, we see that Re (zQ′(z)/Q(z)) > 0, equivalently,
Q is a starlike univalent function in D.

Finally, for z = eiθ, we have

Q(z) =
2 cosλ

z̄ − z + ζ̄ − ζ
=

i cosλ

sin θ + sinλ
.

Since

−1 + sinλ ≤ sin θ + sinλ ≤ 1 + sinλ,

the boundary values of Q form the set

{iy : y ≥ cosλ/(1 + sinλ)} ∪ {∞} ∪ {iy : y ≤ − cosλ/(1− sinλ)}.
Therefore, Q maps D onto the domain Uλ as required. The proof is now complete. �

The function Qλ is a variant of the so-called “open door mapping” (see [3, §2.5]).

Since ψλ(0) = 1, we observe that ϕ ∈ Pλ if and only if ϕ ≺ ψλ. Hence we obtain the
proof of Theorem 1 as follows :

Proof of Theorem 1. Let λ ∈ (−π/2, π/2) and suppose that f ∈ A satisfies (1.3) for
some p ∈ P0. Take a function g ∈ S ∗ so that zg′/g = p. If we put

h =

(
zf ′

f

) (
f

g

)α (
f

z

)iβ

,
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then the same computation as in the proof of Lemma 4 gives the relation

zh′

h
= P [α+ iβ, f ]− αp− iβ.

Thus, by the assumption and Lemma 5, we have h(z) 6= 0 for z ∈ D and

zh′

h
≺ Qλ =

zψ′
λ

ψλ

.

Now it follows from Lemma 3 that h ≺ ψλ, i.e., h ∈ Pλ. Hence Lemma 4 implies that
f ∈ Bλ(α, β). �

In order to prove Theorem 2, we need the following simple observation.

Lemma 6. Let µ1, . . . , µm ∈ (0, 1) with µ1 + · · ·+µm = 1 and g1, . . . , gm ∈ S ∗. Then the
function g ∈ A defined by

g(z) = z

(
g1(z)

z

)µ1

. . .

(
gm(z)

z

)µm

, z ∈ D,

belongs to S ∗.

Proof. By taking the logarithmic derivative of g and multiplying with z, we have

zg′(z)

g(z)
= µ1

zg′1(z)

g1(z)
+ · · ·+ µm

zg′m(z)

gm(z)
.

Since Re {zg′j(z)/gj(z)} > 0 for each j, we conclude that Re {zg′(z)/g(z)} > 0. �

Remark 2. For a convex subdomain V of C \ {0} with 1 ∈ V, we let S ∗(V ) = {f ∈ A :
zf ′(z)/f(z) ∈ V (z ∈ D)}. (For instance, if we choose the half-planes Rew > α(≥ 0) and
Re (eiλw) > 0 and the sector |argw| < πα/2 as V, then we have the classes of functions
which are starlike of order α, λ-spirallike, and strongly starlike of order α, respectively.)
Then, the above proof tells us that g ∈ S ∗(V ) whenever g1, . . . , gm ∈ S ∗(V ).

Remark 3. It is well known that, for g, k ∈ A with g(z) = zk′(z), the condition g ∈ S ∗

is equivalent to the condition k ∈ K . Through this transformation, we understand that
the above lemma turns to the known fact that the class K is convex in the sense of
Hornich operations (see Cima and Pfaltzgraff [2, Theorem 6.1]).

Finally, as an immediate consequence of the above lemma, we can prove Theorem 2.

Proof of Theorem 2. By letting µj = αj/(α1 + · · · + αm) and g be as in Lemma 6, we
see that g ∈ S ∗ by Lemma 6. Now if we put α = α1 + · · · + αm in the expression (1.1),
we have the following expression

f(z) =

[
γ

∫ z

0

g1(ζ)
α1 . . . gm(ζ)αmh(ζ)ζ iβ−1dζ

]1/γ

=

[
γ

∫ z

0

g(ζ)αh(ζ)ζ iβ−1dζ

]1/γ

.

Hence, under the assumptions of Theorem 2, we see that f belongs to Bλ(α, β) = Bλ(α1+
· · ·+ αm, β). �
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5. T. Sheil-Small, On Bazilevič functions, Quart. J. Math. Oxford (2) 23 (1972), 135–142.

Department of Mathematics Education, Yeungnam University, 214-1 Daedong Gyongsan
712-749, Korea

E-mail address: kimyc@yumail.ac.kr

Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-
Hiroshima, 739-8526 Japan

E-mail address: sugawa@math.sci.hiroshima-u.ac.jp


