A NOTE ON BAZILEVIČ FUNCTIONS

YONG CHAN KIM AND TOSHIYUKI SUGAWA

ABSTRACT. We provide a few sufficient conditions for a normalized analytic function in the unit disk to be a Bazilevič function of prescribed type.

1. INTRODUCTION

Throughout the paper, \mathscr{A} denotes the class of analytic functions f in the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ normalized so that f(0) = 0 and f'(0) = 1.

Let α and β be real numbers with $\alpha > 0$ and set $\gamma = \alpha + i\beta$. An $f \in \mathscr{A}$ is called a *Bazilevič* function of type (α, β) if

(1.1)
$$f(z) = \left[\gamma \int_0^z g(\zeta)^{\alpha} h(\zeta) \zeta^{i\beta-1} d\zeta\right]^{1/\gamma}$$
$$= z \left[\gamma \int_0^1 \left(\frac{g(tz)}{tz}\right)^{\alpha} h(tz) t^{\gamma-1} dt\right]^{1/\gamma}$$

for a starlike (univalent) function g in \mathscr{A} and an analytic function h with h(0) = 1satisfying $\operatorname{Re}(e^{i\lambda}h) > 0$ in \mathbb{D} for some $\lambda \in \mathbb{R}$. Here and hereafter, $t^{\gamma-1} = e^{(\gamma-1)\log t}$ with $\log t \in (-\infty, 0)$ for 0 < t < 1 and, for a non-vanishing analytic function G with G(0) = 1, any power G^{δ} , $\delta \in \mathbb{C}$, will be understood as $\exp(\delta \log G)$, where $\log G$ means the analytic branch in \mathbb{D} with $\log G(0) = 0$. We denote by $\mathscr{B}(\alpha, \beta)$ the class of Bazilevič functions of type (α, β) . If we specify the real number λ in the above definition, we denote by $\mathscr{B}_{\lambda}(\alpha, \beta)$ the corresponding subclass of $\mathscr{B}(\alpha, \beta)$.

Let $\mathscr{S}, \mathscr{S}^*, \mathscr{K}, \mathscr{C}$, and $\mathscr{S}_{p}(\lambda), -\pi/2 < \lambda < \pi/2$, denote the subclasses of \mathscr{A} of functions univalent, starlike, convex, close-to-convex, and λ -spirallike, respectively. (For these classes, see [3] for instance, though the notation is not same as here.) It is well known that the inclusion relations $\mathscr{K} \subset \mathscr{S}^* \subset \mathscr{C} \subset \mathscr{S}$ are valid. For $\lambda \in \mathbb{R}$, we also denote by \mathscr{P}_{λ} the class of analytic functions h with h(0) = 1 and $\operatorname{Re}(e^{i\lambda}h) > 0$ in \mathbb{D} . Note that \mathscr{P}_{0} is known as the Carathéodory class.

Date: March 6, 2007, File: yck-sugawa_BF0703.tex.

²⁰⁰⁰ Mathematics Subject Classification. Primary 30C45; Secondary 30C80.

Key words and phrases. Bazilevič function, convex function.

The first author was supported by Yeungnam University. The second author was partially supported by the JSPS Grant-in-Aid for Scientific Research (B), 17340039.

Let $\alpha > 0, \beta \in \mathbb{R}$ and $-\pi/2 < \lambda < \pi/2$. In view of (1.1), for $f \in \mathscr{A}$, we readily see that $f \in \mathscr{B}_{\lambda}(\alpha, \beta)$ if and only if

for some $g \in \mathscr{S}^*$. In this way, the definition of $\mathscr{B}(\alpha, \beta)$ can be extended to the case when $\alpha \geq 0$ naturally. By the above description, we have $\mathscr{B}_0(0,0) = \mathscr{S}^*, \mathscr{B}_{\lambda}(0,0) = \mathscr{S}_p(\lambda)$ and $\mathscr{B}(1,0) = \mathscr{C}$.

Bazilevič [1] showed that $\mathscr{B}(\alpha, \beta) \subset \mathscr{S}$ for $\alpha > 0, \beta \in \mathbb{R}$. Later, Sheil-Small [5] extended it to the case $\alpha \ge 0$ and gave a geometric characterization for $\mathscr{B}(\alpha, \beta)$. So far, Bazilevič functions form the largest known class in \mathscr{S} which has concrete expressions. It is, however, not easy to study them because the expression is somewhat complicated.

In this paper, we give a few sufficient conditions for a function in \mathscr{A} to belong to a class of Bazilevič functions. Let $-\pi/2 < \lambda < \pi/2$ and set $\zeta = e^{i\lambda}$. We now define the slit domain U_{λ} by

$$U_{\lambda} = \mathbb{C} \setminus \{ iy : y \ge A_{\lambda} \text{ or } y \le -1/A_{\lambda} \}, \quad A_{\lambda} = \frac{\cos \lambda}{1 + \sin \lambda}.$$

Note that U_{λ} is starlike with respect to the origin. In order to state our result, we also introduce the notation

$$P[\gamma, f](z) = 1 + \frac{zf''(z)}{f'(z)} + (\gamma - 1)\frac{zf'(z)}{f(z)}$$

for $\gamma \in \mathbb{C}$ and $f \in \mathscr{A}$.

Theorem 1. Let $\alpha > 0, \beta \in \mathbb{R}, -\pi/2 < \lambda < \pi/2$ and $f \in \mathscr{A}$. Suppose that (1.3) $P[\alpha + i\beta, f](z) - \alpha p(z) - i\beta \in U_{\lambda}, \quad z \in \mathbb{D},$

holds true for some $p \in \mathscr{P}_0$. Then $f \in \mathscr{B}_{\lambda}(\alpha, \beta)$.

We have, in particular, the following consequence.

Corollary. Let $\alpha > 0, \beta \in \mathbb{R}$ and $f \in \mathscr{A}$. Suppose that

$$\operatorname{Re} P[\alpha + \mathrm{i}\beta, f](z) > 0, \quad z \in \mathbb{D}.$$

Then $f \in \mathscr{B}_{\lambda}(\alpha, \beta)$ for every $\lambda \in (-\pi/2, \pi/2)$.

Indeed, under the assumption of the corollary, $p := (P[\alpha + i\beta, f] - i\beta)/\alpha$ belongs to \mathscr{P}_0 . Thus, the assumption of Theorem 1 is satisfied for all λ and the claim follows.

Remark 1. If $\beta = 0$, the condition $\operatorname{Re} P[\alpha, f] > 0$ means that f is $(1/\alpha)$ -convex (cf. [3, p. 10]). We note that Sakaguchi [4] obtained the stronger result that the condition $\operatorname{Re} P[\gamma, f] > -1/2$ in \mathbb{D} for some $\gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma > -1/2$ is enough to ensure the univalence of f.

Our second result gives a way of constructing many Bazilevič functions from several known functions.

Theorem 2. Let *m* be a positive integer, $\alpha_1, \ldots, \alpha_m \in (0, +\infty), \beta \in \mathbb{R}$ and set $\gamma = \alpha_1 + \cdots + \alpha_m + i\beta$. If $h \in \mathscr{P}_{\lambda}$ for some $\lambda \in \mathbb{R}$ and $g_1, \ldots, g_m \in \mathscr{S}^*$, then the function *f* defined by

$$f(z) = \left[\gamma \int_0^z g_1(\zeta)^{\alpha_1} \dots g_m(\zeta)^{\alpha_m} h(\zeta) \zeta^{\mathbf{i}\beta - 1} \mathrm{d}\zeta\right]^{1/\gamma}, \quad z \in \mathbb{D},$$

belongs to $\mathscr{B}_{\lambda}(\alpha_1 + \cdots + \alpha_m, \beta)$.

2. Preliminaries

For analytic functions g and h in \mathbb{D} , g is said to be *subordinate* to h if there exists an analytic function ω in \mathbb{D} such that

$$\omega(0) = 0, \quad |\omega(z)| < 1 \quad \text{and} \quad g(z) = h(\omega(z)) \quad (z \in \mathbb{D}).$$

This subordination will be denoted by $g \prec h$ or, conventionally, $g(z) \prec h(z)$. In particular, when h is univalent in \mathbb{D} , $g \prec h$ if and only if

$$g(0) = h(0)$$
 and $g(\mathbb{D}) \subset h(\mathbb{D})$.

The following result is a key ingredient of the proof of Theorem 1.

Lemma 3 ([3, Cor. 3.1d.1]). Let φ be a non-vanishing analytic function in \mathbb{D} such that $\varphi(0) = 1$ and $z\varphi'(z)/\varphi(z)$ is starlike. Suppose that a non-vanishing analytic function h in \mathbb{D} with h(0) = 1 satisfies

$$\frac{zh'(z)}{h(z)} \prec \frac{z\varphi'(z)}{\varphi(z)}.$$

Then $h \prec \varphi$.

It is convenient to translate the condition (1.2) into one in terms of the quantity $P[\gamma, f]$ for the present aim.

Lemma 4. Let $\alpha > 0, \beta \in \mathbb{R}, \lambda \in (-\pi/2, \pi/2), f \in \mathscr{A}$ and set $\gamma = \alpha + i\beta$. Then $f \in \mathscr{B}_{\lambda}(\alpha, \beta)$ if and only if

$$P[\gamma, f] = \alpha p + \mathbf{i}\beta + \frac{zh'}{h}$$

for some $p \in \mathscr{P}_0$ and $h \in \mathscr{P}_{\lambda}$.

Proof. First assume that f is given by (1.1). Then

$$zf(z)^{\gamma-1}f'(z) = g(z)^{\alpha}h(z)z^{\mathbf{i}\beta}.$$

Taking logarithmic derivatives of both sides and multiplying with z, we obtain the relation

$$1 + \frac{zf''(z)}{f'(z)} + (\gamma - 1)\frac{zf'(z)}{f(z)} = \alpha \frac{zg'(z)}{g(z)} + \frac{zh'(z)}{h(z)} + i\beta.$$

Since $p = zg'/g \in \mathscr{P}_0$, we have the required condition. We can easily trace back the above procedure by taking $g \in \mathscr{S}^*$ so that p = zg'/g.

Y. C. KIM AND T. SUGAWA

3. Proof of theorems

First, we prove the following lemma for the Möbius transformation

$$\psi_{\lambda}(z) = \frac{1+\zeta z}{1-\zeta z} = \frac{1+\mathrm{e}^{-\mathrm{i}\lambda}z}{1-\mathrm{e}^{\mathrm{i}\lambda}z}.$$

Lemma 5. Let $\lambda \in (-\pi/2, \pi/2)$. Then the above ψ_{λ} maps the unit disk \mathbb{D} conformally onto the half-plane Re ($e^{i\lambda}w$) > 0. Moreover, the function $Q_{\lambda}(z) = z\psi'_{\lambda}(z)/\psi_{\lambda}(z)$ maps \mathbb{D} conformally onto the domain U_{λ} .

Proof. For brevity, we set $\psi = \psi_{\lambda}$ and $Q = Q_{\lambda}$ for a while. Since $\psi(-\zeta) = 0, \psi(\overline{\zeta}) = \infty$ and $\psi(i) = i\bar{\zeta}$, the image of $\partial \mathbb{D}$ under ψ is the line $\operatorname{Re}(\zeta w) = 0$. Thus, we see that ψ satisfies $\psi(0) = 1$ and maps the unit disk conformally onto the half-plane $\operatorname{Re}(e^{i\lambda}w) > 0$.

We next consider the function Q. Since

$$Q(z) = \frac{2z \cos \lambda}{(1 + \bar{\zeta}z)(1 - \zeta z)},$$

we have the expression

$$\frac{zQ'(z)}{Q(z)} = 1 + \frac{\zeta z}{1 - \zeta z} + \frac{-\bar{\zeta}z}{1 + \bar{\zeta}z}.$$

Since $\operatorname{Re}[z/(1-z)] > -1/2$ for |z| < 1, we see that $\operatorname{Re}(zQ'(z)/Q(z)) > 0$, equivalently, Q is a starlike univalent function in \mathbb{D} .

Finally, for $z = e^{i\theta}$, we have

$$Q(z) = \frac{2\cos\lambda}{\bar{z} - z + \bar{\zeta} - \zeta} = \frac{\mathrm{i}\cos\lambda}{\sin\theta + \sin\lambda}.$$

Since

$$-1 + \sin \lambda \le \sin \theta + \sin \lambda \le 1 + \sin \lambda,$$

the boundary values of Q form the set

$$\{iy: y \ge \cos \lambda/(1+\sin \lambda)\} \cup \{\infty\} \cup \{iy: y \le -\cos \lambda/(1-\sin \lambda)\}.$$

Therefore, Q maps \mathbb{D} onto the domain U_{λ} as required. The proof is now complete.

The function Q_{λ} is a variant of the so-called "open door mapping" (see [3, §2.5]).

Since $\psi_{\lambda}(0) = 1$, we observe that $\varphi \in \mathscr{P}_{\lambda}$ if and only if $\varphi \prec \psi_{\lambda}$. Hence we obtain the proof of Theorem 1 as follows :

Proof of Theorem 1. Let $\lambda \in (-\pi/2, \pi/2)$ and suppose that $f \in \mathscr{A}$ satisfies (1.3) for some $p \in \mathscr{P}_0$. Take a function $g \in \mathscr{S}^*$ so that zg'/g = p. If we put

$$h = \left(\frac{zf'}{f}\right) \left(\frac{f}{g}\right)^{\alpha} \left(\frac{f}{z}\right)^{\alpha},$$

then the same computation as in the proof of Lemma 4 gives the relation

$$\frac{zh'}{h} = P[\alpha + i\beta, f] - \alpha p - i\beta.$$

Thus, by the assumption and Lemma 5, we have $h(z) \neq 0$ for $z \in \mathbb{D}$ and

$$\frac{zh'}{h} \prec Q_{\lambda} = \frac{z\psi_{\lambda}'}{\psi_{\lambda}}.$$

Now it follows from Lemma 3 that $h \prec \psi_{\lambda}$, i.e., $h \in \mathscr{P}_{\lambda}$. Hence Lemma 4 implies that $f \in \mathscr{B}_{\lambda}(\alpha, \beta)$.

In order to prove Theorem 2, we need the following simple observation.

Lemma 6. Let $\mu_1, \ldots, \mu_m \in (0, 1)$ with $\mu_1 + \cdots + \mu_m = 1$ and $g_1, \ldots, g_m \in \mathscr{S}^*$. Then the function $g \in \mathscr{A}$ defined by

$$g(z) = z \left(\frac{g_1(z)}{z}\right)^{\mu_1} \dots \left(\frac{g_m(z)}{z}\right)^{\mu_m}, \quad z \in \mathbb{D},$$

belongs to \mathscr{S}^* .

Proof. By taking the logarithmic derivative of g and multiplying with z, we have

$$\frac{zg'(z)}{g(z)} = \mu_1 \frac{zg'_1(z)}{g_1(z)} + \dots + \mu_m \frac{zg'_m(z)}{g_m(z)}.$$

Since $\operatorname{Re} \left\{ zg'_j(z)/g_j(z) \right\} > 0$ for each j, we conclude that $\operatorname{Re} \left\{ zg'(z)/g(z) \right\} > 0$.

Remark 2. For a convex subdomain V of $\mathbb{C} \setminus \{0\}$ with $1 \in V$, we let $\mathscr{S}^*(V) = \{f \in \mathscr{A} : zf'(z)/f(z) \in V \ (z \in \mathbb{D})\}$. (For instance, if we choose the half-planes $\operatorname{Re} w > \alpha(\geq 0)$ and $\operatorname{Re}(e^{i\lambda}w) > 0$ and the sector $|\arg w| < \pi\alpha/2$ as V, then we have the classes of functions which are starlike of order α , λ -spirallike, and strongly starlike of order α , respectively.) Then, the above proof tells us that $g \in \mathscr{S}^*(V)$ whenever $g_1, \ldots, g_m \in \mathscr{S}^*(V)$.

Remark 3. It is well known that, for $g, k \in \mathscr{A}$ with g(z) = zk'(z), the condition $g \in \mathscr{S}^*$ is equivalent to the condition $k \in \mathscr{K}$. Through this transformation, we understand that the above lemma turns to the known fact that the class \mathscr{K} is convex in the sense of Hornich operations (see Cima and Pfaltzgraff [2, Theorem 6.1]).

Finally, as an immediate consequence of the above lemma, we can prove Theorem 2.

Proof of Theorem 2. By letting $\mu_j = \alpha_j/(\alpha_1 + \cdots + \alpha_m)$ and g be as in Lemma 6, we see that $g \in \mathscr{S}^*$ by Lemma 6. Now if we put $\alpha = \alpha_1 + \cdots + \alpha_m$ in the expression (1.1), we have the following expression

$$f(z) = \left[\gamma \int_0^z g_1(\zeta)^{\alpha_1} \dots g_m(\zeta)^{\alpha_m} h(\zeta) \zeta^{\mathbf{i}\beta-1} \mathrm{d}\zeta\right]^{1/\gamma} = \left[\gamma \int_0^z g(\zeta)^{\alpha} h(\zeta) \zeta^{\mathbf{i}\beta-1} \mathrm{d}\zeta\right]^{1/\gamma}.$$

Hence, under the assumptions of Theorem 2, we see that f belongs to $\mathscr{B}_{\lambda}(\alpha,\beta) = \mathscr{B}_{\lambda}(\alpha_1 + \cdots + \alpha_m,\beta)$.

Y. C. KIM AND T. SUGAWA

References

- I. E. Bazilevič, On a case of integrability in quadratures of the Löwner-Kufarev equation (Russian), Mat. Sb. 37 (1955), 471–476.
- J. A. Cima and J. A. Pfaltzgraff, A Banach space of locally univalent functions, Michigan Math. J. 17 (1970), 321–334.
- 3. S. S. Miller and P. T. Mocanu, *Differential subordinations. Theory and applications*, Marcel Dekker, Inc., New York, 2000.
- 4. K. Sakaguchi, A note on p-valent functions, J. Math. Soc. Japan 14 (1962), 312–321.
- 5. T. Sheil-Small, On Bazilevič functions, Quart. J. Math. Oxford (2) 23 (1972), 135–142.

Department of Mathematics Education, Yeungnam University, 214-1 Daedong Gyongsan 712-749, Korea

E-mail address: kimyc@yumail.ac.kr

Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526 Japan

E-mail address: sugawa@math.sci.hiroshima-u.ac.jp