A NOTE ON BAZILEVIC FUNCTIONS
YONG CHAN KIM AND TOSHIYUKI SUGAWA

ABSTRACT. We provide a few sufficient conditions for a normalized analytic function in
the unit disk to be a Bazilevi¢ function of prescribed type.

1. INTRODUCTION

Throughout the paper, &/ denotes the class of analytic functions f in the unit disk
D = {z € C:|z| < 1} normalized so that f(0) =0 and f'(0) = 1.

Let o and 3 be real numbers with a > 0 and set v = a +i. An f € & is called a
Bazilevi¢ function of type («, f3) if

1/v

(1) f(z) = [v / Zg((;)ah(ociﬂ—ldc}

— ['y /01 <giiz)>ah(tz)t7—1dt} W

for a starlike (univalent) function g in &/ and an analytic function h with A(0) = 1
satisfying Re (e*h) > 0 in D for some A € R. Here and hereafter, 1"~! = e0~Det with
logt € (—00,0) for 0 < ¢t < 1 and, for a non-vanishing analytic function G with G(0) = 1,
any power G°, § € C, will be understood as exp(dlog G), where log G’ means the analytic
branch in D with log G(0) = 0. We denote by %(«, ) the class of Bazilevi¢ functions of
type (a, 3). If we specify the real number X in the above definition, we denote by %, («, 3)
the corresponding subclass of Z(«, ).

Let .77, .7*, % €, and ./, (\),—m/2 < A < /2, denote the subclasses of &7 of func-
tions univalent, starlike, convex, close-to-convex, and A-spirallike, respectively. (For these
classes, see (3] for instance, though the notation is not same as here.) It is well known
that the inclusion relations # C .¥* C € C . are valid. For A € R, we also denote by
P, the class of analytic functions h with 2(0) = 1 and Re (e*h) > 0 in D. Note that £,
is known as the Carathéodory class.
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Let « > 0,8 € Rand —7/2 < A < 7/2. In view of (1.1), for f € &7, we readily see that
f € B(a, ) if and only if
w2l'(2) (f(2)>“ (f(z))” 0
EICRVEV N

for some g € .*. In this way, the definition of %(«a, ) can be extended to the case when
a > 0 naturally. By the above description, we have %,(0,0) = ., %,(0,0) = %, (\)
and #(1,0) = %.

Bazilevic [1] showed that #(a, §) C .7 for a > 0, f € R. Later, Sheil-Small [5] extended
it to the case @ > 0 and gave a geometric characterization for Z(«, 3). So far, Bazilevi¢
functions form the largest known class in . which has concrete expressions. It is, however,
not easy to study them because the expression is somewhat complicated.

(1.2) Re

In this paper, we give a few sufficient conditions for a function in & to belong to a
class of Bazilevi¢ functions. Let —7/2 < A\ < 7/2 and set ¢ = ¢*. We now define the slit
domain U, by

cos A
1 +sin )\

Note that U, is starlike with respect to the origin. In order to state our result, we also
introduce the notation

Uy =C\{iy:y>Ayory < —1/A,}, A\=

2f"(2)
f'(2)

2f'(2)
f(2)

Ply, fl(z) =1+ +(r=1)

fory e Cand f € &

Theorem 1. Let o > 0,0 € R, —7/2 < A < 7/2 and f € /. Suppose that
(13) P[Oé—i-lﬁ,f](Z)—Oép(Z)—lﬁEU)\, ZE[D)a
holds true for some p € Py. Then f € By(a, ).

We have, in particular, the following consequence.

Corollary. Let a > 0,8 € R and f € o7. Suppose that
Re Pla+if, f](z) >0, =z €D.
Then [ € Br(a, B) for every X € (—7/2,7/2).

Indeed, under the assumption of the corollary, p := (Pla + i3, f] — i3)/« belongs to
Zy. Thus, the assumption of Theorem 1 is satisfied for all A and the claim follows.

Remark 1. If 8 = 0, the condition Re P[a, f] > 0 means that f is (1/«)-convex (cf. [3,
p. 10]). We note that Sakaguchi [4] obtained the stronger result that the condition
Re Py, f] > —1/2 in D for some v € C with Rey > —1/2 is enough to ensure the
univalence of f.

Our second result gives a way of constructing many Bazilevi¢ functions from several
known functions.
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Theorem 2. Let m be a positive integer, ay,...,a, € (0,400),3 € R and set v =
a1+ oy +if. If h € Py for some A € R and g4, ..., gm € L, then the function f
defined by

1/

10 = | [0 antermhoc ] e,
belongs to B(ay + -+ + am, ).

2. PRELIMINARIES

For analytic functions g and A in D, ¢ is said to be subordinate to h if there exists an
analytic function w in D such that

w(0)=0, |w(z)<1l and g¢(z)=h(w(z)) (z€D).

This subordination will be denoted by g < h or, conventionally, g(z) < h(z). In particular,
when A is univalent in D, g < h if and only if

g(0) = h(0) and g¢g(D)C h(D).
The following result is a key ingredient of the proof of Theorem 1.

Lemma 3 ([3, Cor. 3.1d.1]). Let ¢ be a non-vanishing analytic function in D such that
©(0) =1 and z¢'(z)/p(z) is starlike. Suppose that a non-vanishing analytic function h
in D with h(0) = 1 satisfies

zW(2)  z¢/(2)

TOIRREOR

Then h < ¢.

It is convenient to translate the condition (1.2) into one in terms of the quantity Py, f]
for the present aim.

Lemma 4. Let « > 0,6 € R, A € (—n/2,7/2),f € o and set v = a + if. Then
f € Bi(a, B) if and only if

/

Py, f] Zap+iﬁ+%

for some p € Py and h € Py.

Proof. First assume that f is given by (1.1). Then
2f(2)7Hf(2) = g(2)*h(2) 27

Taking logarithmic derivatives of both sides and multiplying with z, we obtain the relation
2" (2) 2f(2) _ zg(z) | ()
) FG) e T hG)
Since p = z¢'/g € Py, we have the required condition. We can easily trace back the
above procedure by taking g € .#* so that p = z¢'/g. 0

1+

+(y—1)

+iB.
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3. PROOF OF THEOREMS

First, we prove the following lemma for the Mobius transformation

a(2) = 1+Cz 14e ™z

S 1—(z  1—ez’

Lemma 5. Let A € (—7/2,7/2). Then the above 1\ maps the unit disk D conformally
onto the half-plane Re (e*w) > 0. Moreover, the function Qx(z) = 24(2) /() maps D
conformally onto the domain U.

Proof. For brevity, we set ¢ = 1, and Q = @, for a while. Since /(=) = 0,9(() = o

and (i) = i, the image of D under 1 is the line Re (Cw) = 0. Thus, we see that 1

satisfies 1/(0) = 1 and maps the unit disk conformally onto the half-plane Re (e*w) > 0.
We next consider the function @). Since

22 cos A
M ey )
we have the expression B
2Q'(z) _ Cz —(z
Q(2) =1 1—§z+ 14+ (2

Since Re[z/(1 — z)] > —1/2 for |z| < 1, we see that Re (2Q'(2)/Q(z)) > 0, equivalently,
@ is a starlike univalent function in D.
Finally, for z = ¢, we have

Q(z) =

2cos A\ B 1cos A
Z—24+(—( sinf+sin\’

Since
—1+4+sin A <sinf +sin A < 1+sin A,

the boundary values of () form the set
{iy :y > cosA\/(1 +sin A} U{oo} U{iy:y < —cosA/(1 —sin\)}.

Therefore, () maps D onto the domain Uy as required. The proof is now complete. 0

The function @, is a variant of the so-called “open door mapping” (see [3, §2.5]).

Since 1, (0) = 1, we observe that ¢ € 2, if and only if ¢ < 1. Hence we obtain the
proof of Theorem 1 as follows :

Proof of Theorem 1. Let A € (—7w/2,7/2) and suppose that f € o satisfies (1.3) for
some p € Y. Take a function g € ./* so that z¢'/g = p. If we put

-
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then the same computation as in the proof of Lemma 4 gives the relation

h/
= = Pla+if, f] - ap—if.
Thus, by the assumption and Lemma 5, we have h(z) # 0 for z € D and
zh' 2
Q=22
Now it follows from Lemma 3 that h < ¥y, i.e., h € &2,. Hence Lemma 4 implies that
f € B, B). O

In order to prove Theorem 2, we need the following simple observation.

Lemma 6. Let iy, ..., iy € (0,1) with py 4+ p = 1 and g1, . .., gm € L*. Then the
function g € o/ defined by

o= (B)" (=) e,

Proof. By taking the logarithmic derivative of g and multiplying with z, we have

belongs to ./*.

WG ) 2(2)
o) ) (@)
Since Re {zg}(2)/g;(2)} > 0 for each j, we conclude that Re{zg'(z)/g(2)} > 0. O

Remark 2. For a convex subdomain V of C\ {0} with 1 € V, we let /*(V) = {f € & :
z2f'(2)/f(z) € V (2 € D)}. (For instance, if we choose the half-planes Rew > «(> 0) and
Re (e?w) > 0 and the sector |argw| < ma /2 as V, then we have the classes of functions
which are starlike of order a, A-spirallike, and strongly starlike of order «, respectively.)
Then, the above proof tells us that g € .#*(V') whenever g1, ..., g, € L*(V).

Remark 3. It is well known that, for g, k € & with g(z) = zk/(2), the condition g € .*
is equivalent to the condition & € J#. Through this transformation, we understand that
the above lemma turns to the known fact that the class J# is convex in the sense of
Hornich operations (see Cima and Pfaltzgraff [2, Theorem 6.1]).

Finally, as an immediate consequence of the above lemma, we can prove Theorem 2.

Proof of Theorem 2. By letting p; = a;/(oq + -+ - + ay,,) and g be as in Lemma 6, we
see that g € .* by Lemma 6. Now if we put a = o + -+ - + v, in the expression (1.1),
we have the following expression

1(2) = [v | a0 .gm@)“mh(ociﬁ*dg} - [v PR CRIGIS

Hence, under the assumptions of Theorem 2, we see that f belongs to B, («, ) = Bx(aq+
) m

1/ 1/~
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