
A conformal invariant for

non-vanishing analytic functions

Toshiyuki Sugawa

Department of Mathematics,

Graduate School of Science,

Hiroshima University,

Higashi-Hiroshima, 739-8526 Japan

sugawa@math.sci.hiroshima-u.ac.jp

http://sugawa@cajpn.org/

Joint work with Yong Chan Kim

August 9, 2004, Yeungnam Univ., Korea



Hyperbolic metric.

A plane domain D ⊂ C is called hyperbolic

if ∃ an analytic universal covering projection

p : D → D. Here D = {z ∈ C : |z| < 1}. The

hyperbolic metric ρD(w)|dw| of D is determined

by the equation

1

|p′(z)|(1 − |z|2) = ρD(w), w = p(z).

The hyperbolic metric is conformally invariant

in the sense that the pull-back

f∗ρD′(z) := ρD′(f(z))|f ′(z)|
of ρD′(w)|dw| under a conformal map f : D →
D′ is equal to ρD(z).



The quantity VD(ϕ).

Let ϕ be a non-vanishing analytic function on

a hyperbolic domain D, namely, ϕ : D → C∗ =

C \ {0} is holomorphic. Then we set

VD(ϕ) = sup
z∈D

ρD(z)−1

∣∣∣∣∣
ϕ′(z)
ϕ(z)

∣∣∣∣∣ .
Note that VD(ϕ) can be thought of the Bloch

semi-norm of the (possibly multi-valued) func-

tion logϕ.



Subordination.

A holomorphic function f on D is said to be

subordinate to another holomorphic function

g if there exists a holormorphic function ω :

D → D such that f = g ◦ω and ω(0) = 0. When

we do not require the condition ω(0) = 0 the

function f is said to be weakly subordinate

to g.

When using these notions, the Schwarz-Pick

lemma:

|ω′(z)|
1 − |ω(z)|2 ≤ 1

1 − |z|2 , ω : D → D,

plays an important role. For instance, this

leads to the inequality

f∗ρD′(z) ≤ ρD(z)

for a holomorphic map f : D → D′, where

equality holds at some (and thus every) point

z iff f : D → D′ is a(n unbranched) covering.



Basic properties of VD(ϕ).

(1) VD(ϕ · ψ) ≤ VD(ϕ) + VD(ψ).

(2) VD(ϕα) = |α|VD(ϕ) for α ∈ C as long as
the power ϕα is defined as a single-valued
analytic function on D.

(3) VD0
(ϕ◦p) = VD(ϕ) for analytic (unbranched)

covering p : D0 → D.

(4) VD(L ◦ ϕ) = VD(ϕ) holds for any confor-
mal automorphism L of C∗. In particular,
VD(1/ϕ) = VD(ϕ) = VD(cϕ) for ∀c ∈ C∗.

(5) VD(ϕ) ≤ VD(ψ) if ϕ is weakly subordinate
to ψ.

(6) VD(ϕ) ≤ VD(ψ) if ψ : D → C∗ is univalent
and if ϕ(D) ⊂ ψ(D).



Circular width.

Let Ω be a proper subdomain of C∗. Then

Ω admits an analytic universal covering pro-

jection p of a simply connected proper sub-

domain D of C onto it. Then the quantity

W (Ω) = VD(p) is independent of the partic-

ular choice of p : D → Ω and will be called

the circular width of Ω (around the origin).

Usually, the domain D is chosen to be the unit

disk D but sometimes another domain is more

appropriate to compute the value of W (Ω).

When Ω is simply connected, we can choose

the identity map as p, and thus obtain the re-

lation
1

W (Ω)
= inf

w∈Ω
|w|ρΩ(w).



Basic properties of W (Ω).

(1) W (L(Ω)) = W (Ω) for any conformal auto-

morphism L of C∗.

(2) W (Ω) ≤ 4 for a simply connected domain

Ω ⊂ C∗.

(3) W (Ω) ≤W (Ω1) if Ω ⊂ Ω1 ⊂ C∗.

(4) Let Ω∗ denote the circular symmetrization

of a domain Ω ⊂ C∗. Then W (Ω) ≤W (Ω∗).



Applications.

Theorem 1 (Y. C. Kim -S.) Let Ω be a proper

subdomain of C∗. Suppose that a holomorphic

function f on D satisfies f ′(z) ∈ Ω for any

z ∈ D. If W (Ω) ≤ 1, then f is univalent. More-

over, if W (Ω) ≤ k, for some 0 ≤ k < 1, then

f extends to a k-quasiconformal map of the

Riemann sphere.

Theorem 2 (S. Ponnusamy -S.) Let Ω be a

proper subdomain of C∗. Suppose that a mero-

morphic function

F (z) = z+ b0 + b1/z + b2/z
2 + · · ·

on |z| > 1 satisfies F ′(z) ∈ Ω. If W (Ω) ≤ 1/2,

then F is univalent. Moreover, if W (Ω) ≤ k/2,

for some 0 ≤ k < 1, then F extends to a k-

quasiconformal map of the Riemann sphere.



Some computations.

(1) Sector. Ω = {w ∈ C : |argw| < πα/2}
⇒ W (Ω) = 2α.

(2) Annulus. Ω = {w : r < |w| < R}, 0 ≤ r <
R ≤ ∞

⇒ W (Ω) =
2

π
log

R

r
.

(3) Parallel strip. Ω = {w : a < Rew < b}, 0 <
a < b <∞

⇒ W (Ω) = max
0≤θ≤π/2

k cos θ

1 − kθ/2
,

where k is a positive number such that

b

a
=

4 + kπ

4 − kπ
.

(4) Disk. Ω = {w : |w − a| < r}, 0 < r ≤ a

⇒ W (Ω) =
2r/a

1 +
√

1 − (r/a)2
.



(5) Wedge.

Ω = {w : r < |w| < R, |argw| < πα/2}

⇒ W (Ω) =
log(R/r)

(1 + t)K(t)
,

where

K(t) =
∫ 1

0

dx√
(1 − x2)(1 − t2x2)

is the complete elliptic integral of the first kind

and 0 < t < 1 is a number such that

K(
√

1 − t2)

K(t)
=

2πα

log(R/r)
.


