A conformal invariant for non-vanishing analytic functions

Toshiyuki Sugawa

Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526 Japan sugawa@math.sci.hiroshima-u.ac.jp http://sugawa@cajpn.org/

Joint work with Yong Chan Kim

August 9, 2004, Yeungnam Univ., Korea

Hyperbolic metric.

A plane domain $D \subset \mathbb{C}$ is called **hyperbolic** if \exists an analytic universal covering projection $p : \mathbb{D} \to D$. Here $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. The hyperbolic metric $\rho_D(w)|dw|$ of D is determined by the equation

$$\frac{1}{|p'(z)|(1-|z|^2)} = \rho_D(w), \quad w = p(z).$$

The hyperbolic metric is conformally invariant in the sense that the pull-back

$$f^* \rho_{D'}(z) := \rho_{D'}(f(z))|f'(z)|$$

of $\rho_{D'}(w)|dw|$ under a conformal map $f: D \rightarrow D'$ is equal to $\rho_D(z)$.

The quantity $V_D(\varphi)$.

Let φ be a non-vanishing analytic function on a hyperbolic domain D, namely, $\varphi : D \to \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is holomorphic. Then we set

$$V_D(\varphi) = \sup_{z \in D} \rho_D(z)^{-1} \left| \frac{\varphi'(z)}{\varphi(z)} \right|$$

•

Note that $V_D(\varphi)$ can be thought of the Bloch semi-norm of the (possibly multi-valued) function $\log \varphi$.

Subordination.

A holomorphic function f on \mathbb{D} is said to be **subordinate** to another holomorphic function g if there exists a holormorphic function ω : $\mathbb{D} \to \mathbb{D}$ such that $f = g \circ \omega$ and $\omega(0) = 0$. When we do not require the condition $\omega(0) = 0$ the function f is said to be **weakly subordinate** to g.

When using these notions, the Schwarz-Pick lemma:

$$rac{|\omega'(z)|}{1-|\omega(z)|^2} \leq rac{1}{1-|z|^2}, \quad \omega:\mathbb{D} o\mathbb{D},$$

plays an important role. For instance, this leads to the inequality

$$f^* \rho_{D'}(z) \le \rho_D(z)$$

for a holomorphic map $f : D \to D'$, where equality holds at some (and thus every) point z iff $f : D \to D'$ is a(n unbranched) covering.

Basic properties of $V_D(\varphi)$.

(1)
$$V_D(\varphi \cdot \psi) \leq V_D(\varphi) + V_D(\psi).$$

- (2) $V_D(\varphi^{\alpha}) = |\alpha| V_D(\varphi)$ for $\alpha \in \mathbb{C}$ as long as the power φ^{α} is defined as a single-valued analytic function on D.
- (3) $V_{D_0}(\varphi \circ p) = V_D(\varphi)$ for analytic (unbranched) covering $p : D_0 \to D$.
- (4) $V_D(L \circ \varphi) = V_D(\varphi)$ holds for any conformal automorphism L of \mathbb{C}^* . In particular, $V_D(1/\varphi) = V_D(\varphi) = V_D(c\varphi)$ for $\forall c \in \mathbb{C}^*$.
- (5) $V_{\mathbb{D}}(\varphi) \leq V_{\mathbb{D}}(\psi)$ if φ is weakly subordinate to ψ .
- (6) $V_D(\varphi) \leq V_D(\psi)$ if $\psi : D \to \mathbb{C}^*$ is univalent and if $\varphi(D) \subset \psi(D)$.

Circular width.

Let Ω be a proper subdomain of \mathbb{C}^* . Then Ω admits an analytic universal covering projection p of a simply connected proper subdomain D of \mathbb{C} onto it. Then the quantity $W(\Omega) = V_D(p)$ is independent of the particular choice of $p : D \to \Omega$ and will be called the **circular width** of Ω (around the origin). Usually, the domain D is chosen to be the unit disk \mathbb{D} but sometimes another domain is more appropriate to compute the value of $W(\Omega)$.

When Ω is simply connected, we can choose the identity map as p, and thus obtain the relation

$$\frac{1}{W(\Omega)} = \inf_{w \in \Omega} |w| \rho_{\Omega}(w).$$

Basic properties of $W(\Omega)$.

- (1) $W(L(\Omega)) = W(\Omega)$ for any conformal automorphism L of \mathbb{C}^* .
- (2) $W(\Omega) \leq 4$ for a simply connected domain $\Omega \subset \mathbb{C}^*$.
- (3) $W(\Omega) \leq W(\Omega_1)$ if $\Omega \subset \Omega_1 \subset \mathbb{C}^*$.
- (4) Let Ω^* denote the circular symmetrization of a domain $\Omega \subset \mathbb{C}^*$. Then $W(\Omega) \leq W(\Omega^*)$.

Applications.

Theorem 1 (Y. C. Kim -S.) Let Ω be a proper subdomain of \mathbb{C}^* . Suppose that a holomorphic function f on \mathbb{D} satisfies $f'(z) \in \Omega$ for any $z \in \mathbb{D}$. If $W(\Omega) \leq 1$, then f is univalent. Moreover, if $W(\Omega) \leq k$, for some $0 \leq k < 1$, then f extends to a k-quasiconformal map of the Riemann sphere.

Theorem 2 (S. Ponnusamy -S.) Let Ω be a proper subdomain of \mathbb{C}^* . Suppose that a meromorphic function

$$F(z) = z + b_0 + b_1/z + b_2/z^2 + \cdots$$

on |z| > 1 satisfies $F'(z) \in \Omega$. If $W(\Omega) \le 1/2$, then F is univalent. Moreover, if $W(\Omega) \le k/2$, for some $0 \le k < 1$, then F extends to a kquasiconformal map of the Riemann sphere.

Some computations.

(1) Sector.
$$\Omega = \{ w \in \mathbb{C} : |\arg w| < \pi \alpha/2 \}$$

 $\Rightarrow \quad W(\Omega) = 2\alpha.$

(2) **Annulus.** $\Omega = \{w : r < |w| < R\}, \ 0 \le r < R \le \infty$

$$\Rightarrow W(\Omega) = \frac{2}{\pi} \log \frac{R}{r}.$$

(3) Parallel strip. $\Omega = \{w : a < \operatorname{Re} w < b\}, 0 < a < b < \infty$

$$\Rightarrow \quad W(\Omega) = \max_{0 \le \theta \le \pi/2} \frac{k \cos \theta}{1 - k\theta/2},$$

where k is a positive number such that

$$\frac{b}{a} = \frac{4 + k\pi}{4 - k\pi}.$$

(4) **Disk.** $\Omega = \{w : |w - a| < r\}, \ 0 < r \le a$ $\Rightarrow W(\Omega) = \frac{2r/a}{1 + \sqrt{1 - (r/a)^2}}.$

(5) **Wedge**.

$$\Omega = \{ w : r < |w| < R, |\arg w| < \pi \alpha/2 \}$$
$$\Rightarrow \quad W(\Omega) = \frac{\log(R/r)}{(1+t)\mathcal{K}(t)},$$

where

$$\mathcal{K}(t) = \int_0^1 \frac{dx}{\sqrt{(1-x^2)(1-t^2x^2)}}$$

is the complete elliptic integral of the first kind and 0 < t < 1 is a number such that

$$\frac{\mathcal{K}(\sqrt{1-t^2})}{\mathcal{K}(t)} = \frac{2\pi\alpha}{\log(R/r)}.$$