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Abstract. In this paper, we consider the
class C('; ) of normalized close-to-convex
functions which is de�ned by using subor-
dination for analytic functions ' and  on
the unit disk. Our main object is to pro-
vide bounds of the quantity a3 � �a22 for

functions f(z) = z + a2z2 + a3z3 + � � � in
C(';  ) in terms of ' and  ; where � is
a real constant. We also show that the
class C(';  ) is closed under the convo-
lution operation by convex functions, or
starlike functions of order 1=2 when ' and
 satisfy some mild conditions.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +

1X
n=2

anz
n;

which are analytic in the open unit disk D = fz 2
C : jzj < 1g: Also let S, S�(�) and K(�) denote
the subclasses of A consisting of functions which are
univalent, starlike of order � and convex of order
� in D . In particular, the classes S�(0) = S� and
K(0) = K are the familiar ones of starlike and convex
functions in D , respectively. For analytic functions g
and h with g(0) = h(0), g is said to be subordinate
to h if there exists an analytic function ! on D such
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that !(0) = 0, j!(z)j < 1 and g(z) = h(!(z)) for
z 2 D . The subordination will be denoted by

g � h or g(z) � h(z) in D :

Note that g � h if and only if g(0) = h(0) and g(D ) �
h(D ) when h is univalent in D :

Let M be the class of analytic functions ' in D

normalized by '(0) = 1; and let N be the subclass
of M consisting of those functions ' which are uni-
valent in D and for which '(D ) is convex. Also, for
a constant � � 0; set N (�) = f' 2 N : Re' > �g:

Ma and Minda [6] and the authors [3] de�ned the
subclasses K('), S�(') and C(';  ) of A by

K(') =

�
f 2 A : 1 +

zf 00(z)

f 0(z)
� '(z) in D

�
;

S�(') =

�
f 2 A :

zf 0(z)

f(z)
� '(z) in D

�
;(1.1)

and

C(';  ) =

�
f 2 A : 9h 2 K(') s.t.

f 0(z)

h0(z)
�  (z) in D

�

for ';  2 M: Note that f 2 K(') if and only if
zf 0 2 S�('). Hence f 2 C(';  ) if and only if

9g 2 S�(') such that zf 0(z)=g(z) �  (z) in D :

(1.2)

For functions ',  2 M, if ' and e�i� have pos-
itive real part in D , where � is some constant in
(��=2; �=2); then the class C(';  ) is obviously a
subclass of close-to-convex functions, in particular,
consists of univalent functions in D : Now we recall
that if f 2 A satis�es����arg zf

0(z)

f(z)

���� < �

2
� (z 2 D )(1.3)

for a constant � (0 < � � 1), then f(z) is said to be
strongly starlike of order � in D , and we write f 2 S��.
If we set '�(z) = ((1+z)=(1�z))� (0 < � � 1), then,
from (1.1) and (1.3), we can easily see the inclusion

S�� = S�('�) � C('�; '�):(1.4)

For constants � 2 (��=2; �=2) and  with 0 �  <
cos�, we set

 �;(z) =
1 + (ei� � 2)ei�z

1� z
:

The function  �; maps the unit disk onto the half-
plane fz : Re(e�i�z) > g. Note that S�(�) �
S�( 0;�) and K(�) � K( 0;�) for 0 � � < 1. Note
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also that a function in S�( �;0) is usually called �-
spirallike. We set

C�; =
[

j�j<arccos

C( 0;�;  �;)(1.5)

for 0 � � < 1 and 0 �  < 1. A function in C�;
is called close-to-convex of order (; �) (cf. [2, II,
p.89]). In particular, C � C0;0 is the class of usual
close-to-convex functions.

In [3], the second and third authors investigated
the norm estimate of the pre-Schwarzian derivatives
for the class C(';  ). In this paper, we shall in-
vestigate the coeÆcient bounds of the class C(';  )
and also give convolution properties of functions in
C(';  ). Here, the convolution or the Hadamard
product f � g of two analytic functions

f(z) =
1X
n=0

anz
n and g(z) =

1X
n=0

bnz
n

on D is de�ned by

(f � g)(z) = f(z) � g(z) =
1X
n=0

anbnz
n:

2. Preliminary results

The following lemmas will be required in our in-
vestigation.

Lemma 2.1. Assume that �(z) = e1 + e2z + � � � is

analytic in D with j�(z)j � 1. Then je1j2 + je2j � 1.

Proof. By Schwarz-Pick's Lemma, we obtain

j�0(z)j

1� j�(z)j2
�

1

1� jzj2
;

so that j�(0)j2 + j�0(0)j � 1. Hence je1j2 + je2j �
1.

Lemma 2.2 (Ma and Minda [6]). Let '(z) = 1 +
A1z +A2z

2 + � � � be univalent in D and let '(D ) be

symmetric with respect to the real axis with '0(0) >
0: If f(z) = z + a2z

2 + a3z
3 + � � � 2 K('), then��a3 � �a22

�� � K(�;A1; A2); where

K(�;A1; A2)(2.1)

=

8>>>>>>>><
>>>>>>>>:

(A2 �
3�
2 A

2
1 +A21)=6

if 3A21� � 2(A2 +A21 �A1);

A1=6

if 2(A2 +A21 �A1) � 3A21� � 2(A2 +A21 +A1);

( 3�2 A
2
1 �A21 �A2)=6

if 2(A2 +A21 +A1) � 3A21�:

Lemma 2.3 (Ruscheweyh and Sheil-Small [8]). Suppose

either g 2 K, h 2 S� or else g, h 2 S�(1=2). Then

for any analytic function G in D , we have

(g � hG)(z)

(g � h)(z)
2 coG(D ) (z 2 D );

where coG(D ) is the closed convex hull of G(D ).

3. Main results

We begin by proving

Theorem 3.1. Let '(z) = 1 +A1z +A2z
2 + � � � be

univalent in D , '(D ) be symmetric with respect to the

real axis with '0(0) > 0, and let  (z) = 1 + B1z +
B2z

2 + � � � be analytic in D . If f(z) = z + a2z
2 +

a3z
3 + � � � 2 C(';  ), then��a3 � �a22

�� � K(�;A1; A2) +M(�;A1; B1; B2);

where K(�;A1; A2) is given by (2.1) and

M(�;A1; B1; B2)

=

8>>><
>>>:

1
3

�
jB2 �

3�
4 B

2
1 j+A1jB1jj1�

3�
2 j
�

if A1jB1jj1�
3�
2 j � 2(jB1j � jB2 �

3�
4 B

2
1 j);

jB1j

3
+

(A1jB1jj1�
3�
2 j)

2

12(jB1j � jB2 �
3�
4 B

2
1 j)

otherwise.

Proof. If f 2 C(';  ), from the de�nition of the class
C(';  ) there exists a function h 2 K(') such that
f 0=h0 �  : We set

h(z) = z + d2z
2 + d3z

3 + � � �

and

g(z) =
f 0(z)

h0(z)
= 1 + b1z + b2z

2 + � � � =  (!(z));

(3.1)

where ! is an analytic function on D such that j!(z)j �
jzj for z 2 D . Then a simple calculation shows
b1 = 2(a2�d2) and b2 = 3(a3�d3)�4d2(a2�d2), so
that a2 = b1=2+ d2 and a3 = d3 + b2=3 + (2=3)b1d2.
Thus we have

a3 � �a22(3.2)

=
�
d3 � �d22

�
+

1

3

�
b2 �

3�

4
b21

�
+

�
2

3
� �

�
b1d2:

By Lemma 2.2, we have

jd3 � �d22j � K(�;A1; A2):(3.3)

We write !(z) = e1z + e2z
2 + � � � . Then, from (3.1)

we have b1 = B1e1 and b2 = B1e2 + B2e
2
1. Since
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1+ zh00(z)
h0(z) � '(z) in D ; Rogosinski's result [7] implies

jd2j �
1
2A1. Therefore, we get����13

�
b2 �

3�

4
b21

�
+

�
2

3
� �

�
b1d2

����
�
jB1j

3
je2j+

1

3

����B2 � 3�

4
B2
1

���� je1j2

+

����23 � �

���� jd2B1jje1j
�
jB1j

3
je2j+

1

3

����B2 � 3�

4
B2
1

���� je1j2

+

����13 �
�

2

����A1jB1jje1j:
Taking �(z) = !(z)=z in Lemma 2.1, we obtain je2j �
1� je1j2, so that����13

�
b2 �

3�

4
b21

�
+

�
2

3
� �

�
b1d2

���� � P (je1j);

where P (x) = ax2+ bx+ c and a = 1
3 (jB2�

3�
4 B

2
1 j�

jB1j); b = A1jB1jj
1
3 �

�

2 j and c = jB1j=3: Since b � 0
and 0 � je1j � 1, we have

P (je1j) �

8><
>:
P (�b=2a) = c� b2=4a

if a < 0 and � b=2a < 1;

P (1) = a+ b+ c otherwise.

Thus we conclude����13
�
b2 �

3�

4
b21

�
+

�
2

3
� �

�
b1d2

����(3.4)

�M(�;A1; B1; B2):

Hence, making use of (3.3) and (3.4) in equality
(3.2), we obtain the desired result.

Corollary 3.2. If f(z) = z + a2z
2 + a3z

3 + � � � 2
C( 0;0;  0;0), then

��a3 � �a22
�� �

8>>>>>>>><
>>>>>>>>:

3� 4� if � � 1=3;

1=3 + 4=9� if 1=3 � � � 2=3;

(16� 21�+ 9�2)=3(4� 3�)

if 2=3 � � � 1

3�� 5=3 if 1 � � � 4=3;

4�� 3 if 4=3 � �:

Remark . >From (1.5) it is clear that C( 0;0;  0;0) �
C. For the cases of 0 � � � 1=3 and 1=3 � � � 2=3,
the above estimates agree with those of Koepf [4].

If we take ' =  = '� = z + 2�z2 + 2�2z3 + � � �
in Theorem 3.1, we obtain

Corollary 3.3. If f(z) = z + a2z
2 + a3z

3 + � � � 2
C('�; '�), then

ja3��a
2
2j �

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

(3� 4�)�2 if 3�� � 2�� 1

(1� �)�2 +
�

3

�
2 +

(2� 3�)2�2

2� (2� 3�)�

�

if 2�� 1 � 3�� � 3�� 1

�

�
1 +

(2� 3�)2�2

3(2� 2�+ 3��)

�

if 3�� 1 � 3�� � 2�

�

�
1 +

(2� 3�)2�2

3(2� 3��+ 2�)

�

if 2� � 3�� � 2�+ 1

(3�� 2)�2 + �=3

if 2�+ 1 � 3�� � 3�+ 1

(4�� 3)�2 if 3�+ 1 � 3��:

Noting the relation S�� � C('�; '�); we would
have an estimate for strongly starlike functions of
order �: When 3�� � 2� � 1 or 3�� � 3� + 1;
that estimate incidentally coincides with the sharp
estimate for strongly starlike functions of order �
obtained previously by Ma and Minda [5].

Now, by using Lemma 2.3, we investigate convo-
lution properties of functions in C(';  ): First, we
recall results due to Ma and Minda. The following
form is slightly di�erent from the original one, so we
include its proof here.

Proposition 3.4 ([6]).
(a) Let ' 2 N (0): For g 2 K and h 2 S�('); we

have g � h 2 S�('):
(b) Let ' 2 N (1=2): For g 2 S�(1=2) and h 2

S�('); we have g � h 2 S�('):

Proof. First, we prove (a). Set G = zh0=h � ': Since
z(g � h)0 = g � (zh0) = g � (Gh); from Lemma 2.3, we
see

z(g � h)0(z)

(g � h)(z)
=

(g �Gh)(z)

(g � h)(z)
2 coG(D ) � '(D ):

Hence, we have z(g �h)0=g �h � ': Assertion (b) can
be shown similarly.

With the aid of the above result, we can now prove
the following.

Theorem 3.5.

(a) Let ' 2 N (0) and  2 N : Then, for g 2 K
and f 2 C(';  ); we have g � f 2 C(';  ):

(b) Let ' 2 N (1=2) and  2 N : Then, for g 2
S�(1=2) and f 2 C(';  ); we have g � f 2 C(';  ):
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Proof. We show only (a). We can handle (b) in
the same fashion. Let ' 2 N (0) and  2 N : If
f 2 C(';  ), there is a function h 2 S�(') such that
zf 0=h �  : Set G(z) = zf 0(z)=h(z): Then G(D ) �
 (D ) and z(g �f)0 = g � (zf 0) = g �Gh: Since  (D ) is
convex and since z(g �f)0=(g �h) is analytic, Lemma
2.3 implies that

z(g � f)0(z)

(g � h)(z)
=

(g �Gh)(z)

(g � h)(z)

lies in  (D ); in other words, z(g � f)0=g � h �  :
Now Proposition 3.4 ensures g � h 2 S�('): Hence
we �nd from de�nition (1.2) that g � f 2 C(';  ),
which completes the proof of Theorem 3.5.

Remark . If we apply the above theorem to the case
' =  0;0 and  =  �;0 for j�j < �=2; then Theorem
3.5 would immediately yield that f � g 2 C for f 2 C
and g 2 K (see [1, Theorem 8.7]).
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