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Schwarzian derivative.

For a non-constant meromorphic function f in

a plane domain, the Schwarzian derivative Sf

of f is defined by

Sf =

(
f ′′
f ′

)′
− 1

2

(
f ′′
f ′

)2

.

Sf is holomorphic at z0 ⇔ f is locally univalent

at z0.

Fact: Sf = 0 if and only if f is (a restriction

of) a Möbius map. Moreover, SL◦f = Sf for

any Möbius transformation L.

=⇒ Schwarzian derivative measures deviation

of the function from Möbius maps.



Univalence criteria.

Theorem 1 (Nehari ∼ 1949) If f is univalent
meromorphic in the unit disk D, then

|Sf(z)| ≤ 6(1 − |z|2)−2.

Conversely, if a meromorphic function f in D

satisfies

|Sf(z)| ≤ 2(1 − |z|2)−2,

then f is univalent in D. The numbers 6 and 2
are sharp.

• The Koebe function K(z) = z/(1 − z)2 sat-
isfies

SK(z) =
−6

(1 − z2)2
.

• The function L(z) = (1/2) log(1+ z)/(1− z)
which maps D onto the paralell strip |Imw| <
π/2 satisfies

SL(z) =
2

(1 − z2)2
.



Theorem 2 (Nehari 1949, Pokornyi 1951)

If f satisfies one of the following conditions in

D, then f is univalent in D :

|Sf(z)| ≤
π2

2
,

|Sf(z)| ≤ 4(1 − |z|2)−1.

These numbers are sharp.

• Extremal functions are given, respectively, by

tan
πz

2
and

z

2(1 − z2)
+

1

4
log

1 + z

1 − z
.

Based on these results, a more general univa-

lence criteria were deduced by Avkhadiev and

et al.



Connection with a linear ODE.

For a given holomorphic function ϕ in the unit

disk D, we can construct a locally univalent

meromorphic function f so that Sf = ϕ in D.

Indeed, let y0 and y1 be the analytic solutions

to the ODE

2y′′ + ϕy = 0

in D with the initial conditions

y0(0) = 1, y1(0) = 0,

y′0(0) = 0, y′1(0) = 1.

Note: the Wronskian is identically 1 :

y0y′1 − y′0y1 ≡ 1.



Then the quotient f = y1/y0 is a desired one,

because the logarithmic derivative of

f ′ = y0y′1 − y′0y1

y2
0

=
1

y2
0

yields

f ′′
f ′ = −2y′0

y0
.

Hence,

Sf =

(
−2y′0

y0

)′
− 1

2

(
−2y′0

y0

)2

= −
(
2y′′0
y0

)
+ 2

(
y′0
y0

)2

− 2

(
y′0
y0

)2

= ϕ.

Note: the constructed function f satisfies f(0) =

0, f ′(0) = 1 and f ′′(0) = 0. Third condition can

easily be missed!



Normalizations.

M: the set of meromorphic functions f in the

unit disk D with f(0) = 0, f ′(0) = 1. For a

complex number c, set

M(c) = {f ∈ M : f ′′(0) = 2c}.

Fact:for ϕ and for c ∈ C, there is the unique

function f = fϕ,c in M(c) for which Sf = ϕ

holds.

Indeed, such an f can be given by

fϕ,c =
y1

y0 − cy1
=

fϕ,0

1 − cfϕ,0
.

Note: fϕ,c(z) = z + cz2 + · · · .



Omitted values.

Set K(ϕ) = {c ∈ C : 1/c /∈ fϕ,0(D)}. Note that

K(ϕ) is always compact.

• fϕ,c is pole-free (i.e., analytic) ⇔ c ∈ K(ϕ).

• |c| ≤ 2 for each c ∈ K(ϕ) if fϕ,0 is univalent

meromorphic.



Weight functions.

A(x), 0 ≤ x < 1, is called a weight function

if it is locally Lipschitz, non-decreasing, and

positive.

Example: A(x) = C(1 − x2)−µ.

Let U0, U1, V0 and V1 be the functions on [0,1)

determined by

2U0
′′ = AU0, U0(0) = 1, U0

′(0) = 0,

2U1
′′ = AU1, U1(0) = 0, U1

′(0) = 1,

2V0
′′ = −AV0, V0(0) = 1, V0

′(0) = 0,

2V1
′′ = −AV1, V1(0) = 0, V1

′(0) = 1.

When we need to indicate the weight function

A, we write, for example, U0(x, A) = U0(x).

• U0 > 0 and U0
′ > 0 hold on the interval [0,1)

for any weight function A.



A general univalence criterion

Theorem 3 (Nehari 1954) If

(i) A(x)(1−x2)2 is non-increasing in 0 ≤ x < 1,

(ii) V0(x, A) is positive for 0 ≤ x < 1,

then the condition |Sf(z)| ≤ A(|z|) for a func-

tion f ∈ M implies univalence of f in D.

Examples:

For A(x) = π2/2, one has V0(x) = cos(πx/2).

For A(x) = 4(1−x2)−1, one has V0(x) = 1−x2.

For A(x) = 2(1−x2)−2, one has V0(x) =
√

1 − x2.

Problem:

What geometric properties can we say about

those functions with prescribed growth for the

Schwarzian derivatives?



Starlike and convex functions.

f ∈ M is called starlike if f is univalent analytic

and the image f(D) is starlike with respect to

the origin, in other words,

Re
zf ′(z)
f(z)

> 0, |z| < 1.

f ∈ M is called convex if f is univalent analytic

and the image f(D) is convex, in other words,

Re

(
1 +

zf ′′(z)
f ′(z)

)
> 0, |z| < 1.

For a constant α ∈ [0,1), a function f ∈ M is

called starlike of order α if

Re
zf ′(z)
f(z)

> α, |z| < 1.



• Strohhäcker theorem: a convex function is

starlike of order 1/2.

• Starlike functions of order 1/2 play an impor-

tant role in the theory of convolution (Hadamard

product).

• These properties are not preserved by post-

composition of Möbius maps unlike univalence.



Starlikeness Theorem.

Theorem 4 Let A be a weight function and c

be a complex number. Suppose

2
∫ 1

0
U0

′(x)U1(x)dx + |c|U1(1)
2 ≤ 1.

If a function f ∈ M(c) satisfies |Sf(z)| ≤ A(|z|)
in |z| < 1, then f is starlike of order 1/2.

As the special case when A is a positive con-

stant and c = 0, we obtain



Corollary 5 Let C0 = 2β2
0 ≈ 2.37036, where

β0 is the unique positive root of the equation
sinh(2β) = 4β. If a function f ∈ M(0) satisfies
the inequality |Sf(z)| ≤ C0 in |z| < 1, then f is
a starlike function of order 1/2. The constant
C0 is sharp.

Remarks:

Gabriel (1955) proved that |Sf(z)| ≤ C′
0 implies

starlikeness of f ∈ M(0), where C′
0 = 2β′

0
2 ≈

2.71707 and β′
0 is the unique root of the equa-

tion 2β = tanβ in 0 < β < π/2.

On the other hand, Chiang (1994) showed that
C ′

0 cannot be replaced by a larger number than
C′′

0 = (ξ2 + η2)/2 ≈ 4.6351, where ξ and η

are the smallest positive roots of the equations
ξ tan ξ = −1 and η tanh η = 1.

By some experiments, it is likely that C′′
0 is the

best possible constant.



Convexity Theorem.

Theorem 6 Let A be a weight function and

c be a complex number. Suppose that the

functions V0 and V1 satisfy the inequalities

V0(x) − |c|V1(x) > 0, 0 ≤ x < 1,

and

V0(1) + 2V0
′(1) ≥ |c|(V1(1) + 2V1

′(1)).

If a function f ∈ M(c) satisfies |Sf(z)| ≤ A(|z|)
in |z| < 1, then f is convex.



As a corollary, we obtain an improvement of a

result of Chiang (1994).

Corollary 7 Let C1 = 2β2
1 ≈ 0.853526, where

β1 is the unique root of the equation 2β tanβ =

1 in 0 < β < π/2. If a function f ∈ M(0) satis-

fies the inequality |Sf(z)| ≤ C1 in |z| < 1, then

f is a convex function.

Remarks:

The constant C1 above is not sharp. More

precisely, C1 is the sharp constant for which

|Sf(z)| ≤ C1 implies the inequality |zf ′′(z)/f ′(z)| <

1 in |z| < 1.

As Chiang (1994) showed, the constant C1

cannot be replaced by a larger number than

C′
1 = 2β′

1
2 ≈ 1.19105, where β′

1 is the unique

positive root of the equation β tanhβ = 1/2.



Growth theorems.

Our main theorems are based on some growth

theorems for solutions to the ODE introduced

earlier.

Lemma 8 Let A be a weight function and sup-

pose that |ϕ(z)| ≤ A(|z|) in |z| < 1. The so-

lutions y0 and y1 to the differential equation

2y′′ + ϕy = 0 in D with the initial conditions

y0(0) = 1, y′0(0) = 0, y1(0) = 0, y′1(0) = 1 then

satisfy the inequalities

Ṽ0(|z|, A) ≤|y0(z)| ≤ U0(|z|, A),

|y′0(z)| ≤ U0
′(|z|, A),

Ṽ1(|z|, A) ≤|y1(z)| ≤ U1(|z|, A),

|y′1(z)| ≤ U1
′(|z|, A)

for z ∈ D, where Ṽ (x) = V (x) for 0 ≤ x < x0

and Ṽ (x) = 0 for x ≥ x0 and x0 is the smallest

positive zero of V (x) (if there is no such zero,

set x0 = 1).



Lemma 9 Under the same hypothesis as in
the previous lemma, let y2 = y0 − cy1, where c

is a complex constant for which the function
V2 = V0 − |c|V1 is positive on (0,1). Then the
inequality ∣∣∣∣∣y

′
2(z)

y2(z)

∣∣∣∣∣ ≤ −V2
′(|z|)

V2(|z|)
holds for every z ∈ D.

Idea of proof:

For a fixed ζ ∈ ∂D, we set w(t) = y′2(tζ)/y2(tζ)
and v(t) = −V ′

2(t)/V2(t). Then, the function w

satisfies the Riccati equation

w′ = −ϕ

2
− w2.

Hence, the function u(t) = |w(t)| satisfies the
differential inequality

u′ ≤ |w′| ≤ A

2
+ u2.

Similarly, the function v satisfies v′ = A/2+v2.

Use a comparison theorem!



A comparison theorem.

The following is a specialized comparison the-

orem for the present situation.

Lemma 10 (cf. Walter, ”ODE”, p. 96)

Let A be a non-negative continuous function

on [0,1) and set Pw = w′ − A/2 − w2. If abso-

lutely continuous real-valued functions u, v on

[0,1) satisfy the inequalities

(a) Pu ≤ Pv a.e. in [0,1) and

(b) u(0) ≤ v(0),

then u ≤ v holds in [0,1).



Proof of Starlikeness Theorem. Let f =

y1/y2, where y2 = y0 − cy1. Then the quantity

p(z) = zf ′(z)/f(z) satisfies

1

p(z)
=

y1(z)y2(z)

z

=
∫ 1

0

(
y1y2

)′
(tz)dt

= 1 + 2
∫ 1

0
y1(tz)y

′
2(tz)dt.

We now use the growth theorem to get∣∣∣∣∣ 1

p(z)
− 1

∣∣∣∣∣ ≤ 2
∫ 1

0
U1(t|z|)U2

′(t|z|)dt

≤ 2
∫ 1

0
U1(t)U2

′(t)dt

= 2
∫ 1

0
U1(t)U0

′(t)dt + |c|U1(1)
2.

We now conclude that |1/p(z) − 1| < 1, which

is equivalent to Re p(z) > 1/2.



Proof of Convexity Theorem.

Use the same notation as in the previous proof.

Further we set V2 = V0 − |c|V1. Then, since

f ′ = y−2
2 ,

1 +
zf ′′(z)
f ′(z)

= 1 − 2
y′2(z)
y2(z)

.

By the second growth lemma,∣∣∣∣∣2 y′2(z)
y2(z)

∣∣∣∣∣ ≤ −2
V2

′(|z|)
V2(|z|)

< −2
V2

′(1)
V2(1)

The last term is certainly not greater than 1.

Therefore, Re (1 + zf ′′(z)/f ′(z)) > 0.



Computations.

• The simplest case is when A is a positive

constant. If we write A = 2β2, where β is a

positive number, then

U0(x) = cosh(βx),

U1(x) = sinh(βx)/β,

V0(x) = cos(βx),

V1(x) = sin(βx)/β.

• For A(x) = C(1− x2)−2, where the constant

C is allowed to be negative for convenience. If

we write C = 2(4α2 − 1), then

U0(x) =
√

1 − x2 cosh
[
α log

(
1 + x

1 − x

)]
,

U1(x) =

√
1 − x2

2α
sinh

[
α log

(
1 + x

1 − x

)]
.



• For A(x) = C(1 − x2)−1 with positive con-

stant C = (1 − α2)/2,

U0(x) = F(−1+α
4 ,−1−α

4 ; 1
2;x2)

U1(x) = x F(1+α
4 , 1−α

4 ; 3
2;x2),

where F(a, b; c;x) stands for the hypergeomet-

ric function.

As a corollary, we get

Corollary 11 Let C2 = (1 + β2
2)/2 ≈ 1.52444,

where β2 is the unique positive root of the

equation∫ 1

0
x2F(3+iβ

4 , 3−iβ
4 ; 3

2;x2)F(1+iβ
4 , 1−iβ

4 ; 3
2;x2)dx

=
2

1 + β2
.

If a function f ∈ M(0) satisfies the inequality

|Sf(z)| ≤ C2/(1 − |z|2) in |z| < 1, then f is a

starlike function of order 1/2. The constant

C2 is sharp.



Final remark.

The Schwarzian radius of convexity (cf. Chi-

ang 1994) must be zero unless we impose some

restriction on the second coefficient c = f ′′(0)/2.

Proposition 12 Let ϕ be analytic in the unit

disk. Suppose that fϕ,0 is univalent and that

fϕ,c is convex for every c ∈ K(ϕ). Then, ϕ = 0.

This follows from the more geometric asser-

tion.

Proposition 13 Let D be a proper subdomain

of the complex plane C. Suppose that L(D) is

convex for each Möbius transformation L such

that L−1(∞) /∈ D. Then D is a disk or a half-

plane.


