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Schwarzian derivative.

For a non-constant meromorphic function f in
a plane domain, the Schwarzian derivative Sy
of f is defined by

o= (Y 1Y
/ f/ 2f/'

Sf is holomorphic at zg & f is locally univalent
at zp.

Fact: Sy = 0 if and only if f is (a restriction
of) a MObius map. Moreover, Sy, = S for
any Mobius transformation L.

—= Schwarzian derivative measures deviation
of the function from MObius maps.



Univalence criteria.

Theorem 1 (Nehari ~ 1949) If f is univalent
meromorphic in the unit disk D, then

S5(2)] < 6(1—12[*)>.
Conversely, if a meromorphic function f in D
satisfies

Sp(2)] < 2(1 —[29) 77,

then f is univalent in D. The numbers 6 and 2
are sharp.

e The Koebe function K(z) = z/(1 — 2)? sat-

isfies
—6

(1-22)2

Sk(z) =

e The function L(z) =(1/2)log(1+2)/(1—=2)
which maps D onto the paralell strip |Imw| <
/2 satisfies

2
(1-22)2

Si(z) =



Theorem 2 (Nehari 1949, Pokornyi 1951)
If f satisfies one of the following conditions in
D, then f is univalent in D

2

T
<
1S¢(2)] < >

S7(2)] < 41— D)L,

T hese numbers are sharp.

e Extremal functions are given, respectively, by

Tz z 1 1+ 2
tan— and —|o :
> 2(1_22) 72997,

Based on these results, a more general univa-
lence criteria were deduced by Avkhadiev and
et al.



Connection with a linear ODE.

For a given holomorphic function ¢ in the unit
disk D, we can construct a locally univalent
meromorphic function f so that Sf = ¢ in D.
Indeed, let yg and y; be the analytic solutions
to the ODE

2y" 4+ py =0

in D with the initial conditions

yo(0) =1, 41(0) =0,
yo(0) =0, y1(0)=1.

Note: the Wronskian is identically 1 :

/ / _
Yoyl — Yovy1 = 1.



Then the quotient f = y1/yg is a desired one,
because the logarithmic derivative of

= yoys —¥o¥1 _ 1
= 2 = 5
Y0 90

yields
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Note: the constructed function f satisfies f(0) =
0, f/(0) = 1 and f”/(0) = 0. Third condition can
easily be missed!



Normalizations.

M the set of meromorphic functions f in the
unit disk D with f(0) = 0, f/(0) = 1. For a
complex number ¢, set

M(c) ={f e M: f(0) = 2c}.

Fact.for ¢ and for ¢ € C, there is the unique
function f = fo.c in M(c) for which S; = ¢
holds.

Indeed, such an f can be given by

y1  __ Jeo
yo—cy1 1—cfyo

Note: foe(z) =2+ cz?+---.



Omitted values.

Set K(p) ={ceC:1/cé f,0o(D)}. Note that
K () is always compact.

o f,c is pole-free (i.e., analytic) & c € K(y).

o |[c| <2 for each c € K(p) if f, 0 is univalent
meromorphic.



Weight functions.

A(x), 0 < x < 1, is called a weight function
if it is locally Lipschitz, non-decreasing, and
positive.

Example: A(z) = C(1 — z2)~H.

Let Up, U1, Vp and V7 be the functions on [0,1)
determined by

2Uy = AUy, Up(0)=1, Uy (0) =0,
2U{" = AU;, U.{(0)=0, U;(0)=1,
2Vo = —AVy, Vp(0) =1, V'(0) =0,
oV = —Avy, V1(0) =0, V47/(0)=1.

When we need to indicate the weight function
A, we write, for example, Ug(z, A) = Up(x).

e Uy > 0 and Uy’ > 0 hold on the interval [0,1)
for any weight function A.



A general univalence criterion

Theorem 3 (Nehari 1954) If

(i) A(x)(1—22)2 is non-increasing in 0 < z < 1,
(ii) Vo(x, A) is positive for 0 <z < 1,

then the condition |S¢(2)| < A(]z]) for a func-
tion f € M implies univalence of f in ID.

Examples:
For A(z) = n2/2, one has Vy(z) = cos(nz/2).
For A(z) = 4(1—2z2)~1 one has Vp(z) = 1—z2.

For A(z) = 2(1—22)"2, one has V(z) = /1 — z2.

Problem:

What geometric properties can we say about
those functions with prescribed growth for the
Schwarzian derivatives?



Starlike and convex functions.

f € M is called starlike if f is univalent analytic
and the image f(DD) is starlike with respect to
the origin, in other words,

2f'(2)

TS

>0, |z]<1.

f € M is called convex if f is univalent analytic
and the image f(ID) is convex, in other words,

2f"(2)
f'(2)

Re (1—|— >>O, |z] < 1.

For a constant a € [0,1), a function f € M is
called starlike of order o« if

2f'(2)

TS

>, |z] < 1.



e Strohhacker theorem: a convex function is
starlike of order 1/2.

e Starlike functions of order 1/2 play an impor-
tant role in the theory of convolution (Hadamard
product).

e [ hese properties are not preserved by post-
composition of Mobius maps unlike univalence.



Starlikeness T heorem.

Theorem 4 Let A be a weight function and c
be a complex number. Suppose

1
2/0 Uo' (2)Uy (z)dz + |¢|U1(1)2 < 1.
If a function f € M(c) satisfies |S;(z)| < A(]z])
in |z| < 1, then f is starlike of order 1/2.

As the special case when A is a positive con-
stant and ¢ = 0, we obtain



Corollary 5 Let Cy = 232 ~ 2.37036, where
Bo is the unique positive root of the equation
sinh(28) = 43. If a function f € M(0) satisfies
the inequality |S¢(z)| < Cp in |z| < 1, then f is
a starlike function of order 1/2. The constant
Co is sharp.

Remarks:

Gabriel (1955) proved that |S¢(z)| < Cf implies
starlikeness of f € M(0), where Cj = 2662 ~

2.71707 and g is the unique root of the equa-
tion 26 =tang in 0 < B < w/2.

On the other hand, Chiang (1994) showed that
C{, cannot be replaced by a larger number than
CY = (€2 + n?)/2 =~ 4.6351, where ¢ and 7
are the smallest positive roots of the equations
Etan¢& = —1 and ntanhn = 1.

By some experiments, it is likely that C is the
best possible constant.



Convexity Theorem.

Theorem 6 Let A be a weight function and
c be a complex number. Suppose that the
functions Vo and V7 satisfy the inequalities

VQ(QZ) — |C|V1(33) >0, 0< <1,
and

Vo(1) + 2Vp'(1) > le[(V1(1) + 2V4/(1)).

If a function f € M(c) satisfies |S;(z)| < A(]z])
in |z| <1, then f is convex.



As a corollary, we obtain an improvement of a
result of Chiang (1994).

Corollary 7 Let C; = 237 ~ 0.853526, where
(1 is the unique root of the equation 28 tan 8 =
1 in 0< B < =w/2. If a function f € M(0) satis-
fies the inequality |S¢(z)| < C1 in |z| < 1, then
f is a convex function.

Remarks:

The constant 1 above is not sharp. More
precisely, (1 is the sharp constant for which
|S¢(2)| < Cqp implies the inequality [z f"(2)/f(2)| <
1in |z| < 1.

As Chiang (1994) showed, the constant C4
cannot be replaced by a larger number than
¢} = 28,% ~ 1.19105, where 8} is the unique
positive root of the equation gtanhg = 1/2.



Growth theorems.

Our main theorems are based on some growth
theorems for solutions to the ODE introduced
earlier.

Lemma 8 Let A be a weight function and sup-
pose that |p(z)| < A(|]z]) in |z| < 1. The so-
lutions yg and y1 to the differential equation
2y"”" 4+ oy = 0 in D with the initial conditions

yo(0) = 1,y5(0) = 0,y1(0) = 0,44(0) = 1 then
satisfy the inequalities

Vo(lz], A) <|yo(2)| < Ug(|z|, A),
yo(2)| < Ug'(|2], A),
Vi(|z], A) <|y1(2)| < U1(Jz], A),
y1(2)| < Ui'(Jz|, A)
for z € D, where V(z) = V(z) for 0 < x < zg
and V(z) =0 for x > zg and xq is the smallest

positive zero of V(x) (if there is no such zero,
set xg = 1).




Lemma 9 Under the same hypothesis as in
the previous lemma, let yo = yg — cyy, where c
iIs a complex constant for which the function
Vo = Vo — |c|V7 is positive on (0,1). Then the
inequality

y5(z)

y2(2)
holds for every z € D.

o _V2o'(=)
— Va(lz)

Idea of proof:

For a fixed ¢ € 9D, we set w(t) = y5(t() /y2(t¢)
and v(t) = —V4(t)/Va(t). Then, the function w
satisfies the Riccati equation

w’z —f—wz.

Hence, the function u(t) = |w(t)| satisfies the
differential inequality

A
v < |w'| < 5 + u?.

Similarly, the function v satisfies v/ = A/24v2.
Use a comparison theorem!



A comparison theorem.

The following is a specialized comparison the-
orem for the present situation.

Lemma 10 (cf. Walter, "ODE"”, p. 96)
Let A be a non-negative continuous function
on [0,1) and set Pw = w' — A/2 — w?. If abso-
lutely continuous real-valued functions u,v on
[0, 1) satisfy the inequalities

(a) Pu< Pv a.e. in [0,1) and

(b) u(0) <v(0),

then v <o holds in [0, 1).



Proof of Starlikeness Theorem. Let f =
y1/y2, where yo = yg — cy1. Then the quantity

p(2) = zf'(z)/f(2) satisfies

1 y1(2)ya(2)
p(2) z

= /01 (y1y2>,(t2)dt
1
=142 [ n=)hta)d

We now use the growth theorem to get

1
p(z)

1
“1]<02 /O U1 (t|2)) U (t|2])dt

1
<2 /O UL (1)U (t)dt

— 2/01 Uy (£)Ug' (t)dt + |c|U7(1)2.

We now conclude that |1/p(z) — 1] < 1, which
is equivalent to Rep(z) > 1/2.



Proof of Convexity Theorem.

Use the same notation as in the previous proof.
Further we set Vo = Vg — |c|V7. Then, since

=1y
SO0
OO}

By the second growth lemma,

/ V / V / 1

)| o VD V()

y2(2) Va(lz]) Vo(1)

The last term is certainly not greater than 1.
Therefore, Re (1 + zf"(2)/f'(2)) > 0.

1+

2




Computations.

e T he simplest case is when A is a positive
constant. If we write A = 232, where 3 is a
positive number, then

Uo(x) = cosh(Bx),
Ui(z) = sinh(Bz)/8,
Vo(z) = cos(fz),
Vi(z) = sin(Bz)/B.

e For A(z) = C(1 — 22)~2, where the constant
C' is allowed to be negative for convenience. If
we write C = 2(4a? — 1), then

Uo(z) = /1 — 22 cosh [alog (1 T x)] :

71() = Y2 sinh [atog (2H2)]

(87




e For A(z) = C(1 — z2)~1 with positive con-
stant C = (1 — a?)/2,

Up(z) = F(—F2, —172; 5 27)

Up(z) = o F(AE%, 179, 3: 22),

where F'(a,b; c; ) stands for the hypergeomet-
ric function.

As a corollary, we get

Corollary 11 Let Cp = (1 4 33)/2 ~ 1.52444,
where (3o is the unique positive root of the
equation

1
/o 2F(3—|—zﬁ 3— 7,/3 % Q)F(l—l—zﬁ 1— zﬁ % 2)daf;

. 2

1462

If a function f € M(Q) satisfies the inequality
S¢(2)| < Cr/(1 — z|2) in |z| < 1, then f is a
starlike function of order 1/2. The constant
C'> is sharp.




Final remark.

The Schwarzian radius of convexity (cf. Chi-
ang 1994) must be zero unless we impose some
restriction on the second coefficient ¢ = f”(0)/2.

Proposition 12 Let ¢ be analytic in the unit
disk. Suppose that f%o iIs univalent and that
fo.c is convex for every c € K(¢). Then, ¢ = 0.

This follows from the more geometric asser-
tion.

Proposition 13 Let D be a proper subdomain
of the complex plane C. Suppose that L(D) is
convex for each Mobius transformation L such
that L~ 1(c0) ¢ D. Then D is a disk or a half-
plane.



