Geometric properties of functions with small Schwarzian derivatives

Toshiyuki Sugawa

Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526 Japan sugawa@math.sci.hiroshima-u.ac.jp http://sugawa@cajpn.org/

July 29, 2003, Chiang Mai, Thailand

Joint work with Ji-A Kim at POSTECH, Korea

Schwarzian derivative.

For a non-constant meromorphic function f in a plane domain, the Schwarzian derivative ${\cal S}_f$ of f is defined by

$$S_f = \left(\frac{f''}{f'}\right)' - \frac{1}{2} \left(\frac{f''}{f'}\right)^2.$$

 S_f is holomorphic at $z_0 \Leftrightarrow f$ is locally univalent at z_0 .

Fact: $S_f = 0$ if and only if f is (a restriction of) a Möbius map. Moreover, $S_{L \circ f} = S_f$ for any Möbius transformation L.

 \implies Schwarzian derivative measures deviation of the function from Möbius maps.

Univalence criteria.

Theorem 1 (Nehari ~ 1949) If f is univalent meromorphic in the unit disk \mathbb{D} , then

$$|S_f(z)| \le 6(1-|z|^2)^{-2}.$$

Conversely, if a meromorphic function f in \mathbb{D} satisfies

$$|S_f(z)| \le 2(1 - |z|^2)^{-2},$$

then f is univalent in \mathbb{D} . The numbers 6 and 2 are sharp.

• The Koebe function $K(z) = z/(1-z)^2$ satisfies

$$S_K(z) = \frac{-6}{(1-z^2)^2}.$$

• The function $L(z) = (1/2) \log(1+z)/(1-z)$ which maps $\mathbb D$ onto the paralell strip $|{\rm Im}\,w| < \pi/2$ satisfies

$$S_L(z) = \frac{2}{(1-z^2)^2}.$$

Theorem 2 (Nehari 1949, Pokornyi 1951) If f satisfies one of the following conditions in \mathbb{D} , then f is univalent in \mathbb{D} :

$$|S_f(z)| \le rac{\pi^2}{2},$$

 $|S_f(z)| \le 4(1 - |z|^2)^{-1}.$

These numbers are sharp.

• Extremal functions are given, respectively, by

$$\tan \frac{\pi z}{2}$$
 and $\frac{z}{2(1-z^2)} + \frac{1}{4} \log \frac{1+z}{1-z}$.

Based on these results, a more general univalence criteria were deduced by Avkhadiev and *et al*.

Connection with a linear ODE.

For a given holomorphic function φ in the unit disk \mathbb{D} , we can construct a locally univalent meromorphic function f so that $S_f = \varphi$ in \mathbb{D} . Indeed, let y_0 and y_1 be the analytic solutions to the ODE

$$2y'' + \varphi y = 0$$

in $\mathbb D$ with the initial conditions

$$y_0(0) = 1, \quad y_1(0) = 0,$$

 $y'_0(0) = 0, \quad y'_1(0) = 1.$

Note: the Wronskian is identically 1:

$$y_0y_1' - y_0'y_1 \equiv 1.$$

Then the quotient $f = y_1/y_0$ is a desired one, because the logarithmic derivative of

$$f' = \frac{y_0 y_1' - y_0' y_1}{y_0^2} = \frac{1}{y_0^2}$$

yields

$$\frac{f''}{f'} = -\frac{2y_0'}{y_0}.$$

Hence,

$$S_{f} = \left(-\frac{2y_{0}'}{y_{0}}\right)' - \frac{1}{2}\left(-\frac{2y_{0}'}{y_{0}}\right)^{2}$$
$$= -\left(\frac{2y_{0}''}{y_{0}}\right) + 2\left(\frac{y_{0}'}{y_{0}}\right)^{2} - 2\left(\frac{y_{0}'}{y_{0}}\right)^{2}$$
$$= \varphi.$$

Note: the constructed function f satisfies f(0) = 0, f'(0) = 1 and f''(0) = 0. Third condition can easily be missed!

Normalizations.

 \mathcal{M} : the set of meromorphic functions f in the unit disk \mathbb{D} with f(0) = 0, f'(0) = 1. For a complex number c, set

$$\mathcal{M}(c) = \{ f \in \mathcal{M} : f''(0) = 2c \}.$$

Fact: for φ and for $c \in \mathbb{C}$, there is the unique function $f = f_{\varphi,c}$ in $\mathcal{M}(c)$ for which $S_f = \varphi$ holds.

Indeed, such an f can be given by

$$f_{\varphi,c} = \frac{y_1}{y_0 - cy_1} = \frac{f_{\varphi,0}}{1 - cf_{\varphi,0}}.$$

Note: $f_{\varphi,c}(z) = z + cz^2 + \cdots$.

Omitted values.

Set $K(\varphi) = \{c \in \mathbb{C} : 1/c \notin f_{\varphi,0}(\mathbb{D})\}$. Note that $K(\varphi)$ is always compact.

• $f_{\varphi,c}$ is pole-free (i.e., analytic) $\Leftrightarrow c \in K(\varphi)$.

• $|c| \leq 2$ for each $c \in K(\varphi)$ if $f_{\varphi,0}$ is univalent meromorphic.

Weight functions.

A(x), $0 \le x < 1$, is called a *weight function* if it is locally Lipschitz, non-decreasing, and positive.

Example: $A(x) = C(1 - x^2)^{-\mu}$.

Let U_0, U_1, V_0 and V_1 be the functions on [0, 1) determined by

$2U_0'' = AU_0,$	$U_0(0) = 1,$	$U_0'(0) = 0,$
$2U_1'' = AU_1,$	$U_1(0)=0,$	$U_1'(0) = 1,$
$2V_0'' = -AV_0,$	$V_0(0) = 1,$	$V_0'(0) = 0,$
$2V_1'' = -AV_1,$	$V_1(0)=0,$	$V_1'(0) = 1.$

When we need to indicate the weight function A, we write, for example, $U_0(x, A) = U_0(x)$.

• $U_0 > 0$ and $U_0' > 0$ hold on the interval [0, 1) for any weight function A.

A general univalence criterion

Theorem 3 (Nehari 1954) If

(i) $A(x)(1-x^2)^2$ is non-increasing in $0 \le x < 1$, (ii) $V_0(x, A)$ is positive for $0 \le x < 1$, then the condition $|S_f(z)| \le A(|z|)$ for a function $f \in \mathcal{M}$ implies univalence of f in \mathbb{D} .

Examples:

For $A(x) = \pi^2/2$, one has $V_0(x) = \cos(\pi x/2)$. For $A(x) = 4(1-x^2)^{-1}$, one has $V_0(x) = 1-x^2$. For $A(x) = 2(1-x^2)^{-2}$, one has $V_0(x) = \sqrt{1-x^2}$.

Problem:

What geometric properties can we say about those functions with prescribed growth for the Schwarzian derivatives?

Starlike and convex functions.

 $f \in \mathcal{M}$ is called *starlike* if f is univalent analytic and the image $f(\mathbb{D})$ is starlike with respect to the origin, in other words,

$$\operatorname{\mathsf{Re}}rac{zf'(z)}{f(z)}>0, \quad |z|<1.$$

 $f \in \mathcal{M}$ is called *convex* if f is univalent analytic and the image $f(\mathbb{D})$ is convex, in other words,

Re
$$\left(1 + \frac{zf''(z)}{f'(z)}\right) > 0, \quad |z| < 1.$$

For a constant $\alpha \in [0, 1)$, a function $f \in \mathcal{M}$ is called *starlike of order* α if

$$\operatorname{Re}rac{zf'(z)}{f(z)} > lpha, \quad |z| < 1.$$

• Strohhäcker theorem: a convex function is starlike of order 1/2.

• Starlike functions of order 1/2 play an important role in the theory of convolution (Hadamard product).

• These properties are not preserved by postcomposition of Möbius maps unlike univalence.

Starlikeness Theorem.

Theorem 4 Let A be a weight function and c be a complex number. Suppose

$$2\int_0^1 U_0'(x)U_1(x)dx + |c|U_1(1)^2 \le 1.$$

If a function $f \in \mathcal{M}(c)$ satisfies $|S_f(z)| \le A(|z|)$

in |z| < 1, then f is starlike of order 1/2.

As the special case when A is a positive constant and c = 0, we obtain

Corollary 5 Let $C_0 = 2\beta_0^2 \approx 2.37036$, where β_0 is the unique positive root of the equation $\sinh(2\beta) = 4\beta$. If a function $f \in \mathcal{M}(0)$ satisfies the inequality $|S_f(z)| \leq C_0$ in |z| < 1, then f is a starlike function of order 1/2. The constant C_0 is sharp.

Remarks:

Gabriel (1955) proved that $|S_f(z)| \leq C'_0$ implies starlikeness of $f \in \mathcal{M}(0)$, where $C'_0 = 2{\beta'_0}^2 \approx$ 2.71707 and β'_0 is the unique root of the equation $2\beta = \tan \beta$ in $0 < \beta < \pi/2$.

On the other hand, Chiang (1994) showed that C'_0 cannot be replaced by a larger number than $C''_0 = (\xi^2 + \eta^2)/2 \approx 4.6351$, where ξ and η are the smallest positive roots of the equations $\xi \tan \xi = -1$ and $\eta \tanh \eta = 1$.

By some experiments, it is likely that C_0'' is the best possible constant.

Convexity Theorem.

Theorem 6 Let A be a weight function and c be a complex number. Suppose that the functions V_0 and V_1 satisfy the inequalities

 $V_0(x) - |c|V_1(x) > 0, \ 0 \le x < 1,$

and

 $V_0(1) + 2V_0'(1) \ge |c|(V_1(1) + 2V_1'(1)).$

If a function $f \in \mathcal{M}(c)$ satisfies $|S_f(z)| \leq A(|z|)$ in |z| < 1, then f is convex. As a corollary, we obtain an improvement of a result of Chiang (1994).

Corollary 7 Let $C_1 = 2\beta_1^2 \approx 0.853526$, where β_1 is the unique root of the equation $2\beta \tan \beta = 1$ in $0 < \beta < \pi/2$. If a function $f \in \mathcal{M}(0)$ satisfies the inequality $|S_f(z)| \le C_1$ in |z| < 1, then f is a convex function.

Remarks:

The constant C_1 above is not sharp. More precisely, C_1 is the sharp constant for which $|S_f(z)| \le C_1$ implies the inequality |zf''(z)/f'(z)| < 1 in |z| < 1.

As Chiang (1994) showed, the constant C_1 cannot be replaced by a larger number than $C'_1 = 2{\beta'_1}^2 \approx 1.19105$, where β'_1 is the unique positive root of the equation $\beta \tanh \beta = 1/2$.

Growth theorems.

Our main theorems are based on some growth theorems for solutions to the ODE introduced earlier.

Lemma 8 Let A be a weight function and suppose that $|\varphi(z)| \leq A(|z|)$ in |z| < 1. The solutions y_0 and y_1 to the differential equation $2y'' + \varphi y = 0$ in \mathbb{D} with the initial conditions $y_0(0) = 1, y'_0(0) = 0, y_1(0) = 0, y'_1(0) = 1$ then satisfy the inequalities

$$egin{aligned} & ilde{V_0}(|z|,A) \leq &|y_0(z)| \leq U_0(|z|,A), \ &|y_0'(z)| \leq U_0'(|z|,A), \ & ilde{V_1}(|z|,A) \leq &|y_1(z)| \leq U_1(|z|,A), \ &|y_1'(z)| \leq U_1'(|z|,A) \end{aligned}$$

for $z \in \mathbb{D}$, where $\tilde{V}(x) = V(x)$ for $0 \le x < x_0$ and $\tilde{V}(x) = 0$ for $x \ge x_0$ and x_0 is the smallest positive zero of V(x) (if there is no such zero, set $x_0 = 1$). **Lemma 9** Under the same hypothesis as in the previous lemma, let $y_2 = y_0 - cy_1$, where cis a complex constant for which the function $V_2 = V_0 - |c|V_1$ is positive on (0, 1). Then the inequality

$$\left|\frac{y_2'(z)}{y_2(z)}\right| \le -\frac{V_2'(|z|)}{V_2(|z|)}$$

holds for every $z \in \mathbb{D}$.

Idea of proof:

For a fixed $\zeta \in \partial \mathbb{D}$, we set $w(t) = y'_2(t\zeta)/y_2(t\zeta)$ and $v(t) = -V'_2(t)/V_2(t)$. Then, the function wsatisfies the Riccati equation

$$w' = -\frac{\varphi}{2} - w^2.$$

Hence, the function u(t) = |w(t)| satisfies the differential inequality

$$u' \le |w'| \le \frac{A}{2} + u^2.$$

Similarly, the function v satisfies $v' = A/2 + v^2$. Use a comparison theorem!

A comparison theorem.

The following is a specialized comparison theorem for the present situation.

Lemma 10 (cf. Walter, "ODE", p. 96) Let A be a non-negative continuous function on [0,1) and set $Pw = w' - A/2 - w^2$. If absolutely continuous real-valued functions u, v on [0,1) satisfy the inequalities (a) $Pu \leq Pv$ a.e. in [0,1) and (b) $u(0) \leq v(0)$, then $u \leq v$ holds in [0,1). **Proof of Starlikeness Theorem.** Let $f = y_1/y_2$, where $y_2 = y_0 - cy_1$. Then the quantity p(z) = zf'(z)/f(z) satisfies

$$\frac{1}{p(z)} = \frac{y_1(z)y_2(z)}{z}$$
$$= \int_0^1 (y_1y_2)'(tz)dt$$
$$= 1 + 2\int_0^1 y_1(tz)y_2'(tz)dt.$$

We now use the growth theorem to get

$$\begin{aligned} \left| \frac{1}{p(z)} - 1 \right| &\leq 2 \int_0^1 U_1(t|z|) U_2'(t|z|) dt \\ &\leq 2 \int_0^1 U_1(t) U_2'(t) dt \\ &= 2 \int_0^1 U_1(t) U_0'(t) dt + |c| U_1(1)^2. \end{aligned}$$

We now conclude that |1/p(z) - 1| < 1, which is equivalent to $\operatorname{Re} p(z) > 1/2$.

Proof of Convexity Theorem.

Use the same notation as in the previous proof. Further we set $V_2 = V_0 - |c|V_1$. Then, since $f' = y_2^{-2}$,

$$1 + \frac{zf''(z)}{f'(z)} = 1 - 2\frac{y_2'(z)}{y_2(z)}.$$

By the second growth lemma,

$$\left|2\frac{y_2'(z)}{y_2(z)}\right| \le -2\frac{V_2'(|z|)}{V_2(|z|)} < -2\frac{V_2'(1)}{V_2(1)}$$

The last term is certainly not greater than 1. Therefore, $\operatorname{Re}(1 + zf''(z)/f'(z)) > 0$.

Computations.

• The simplest case is when A is a positive constant. If we write $A = 2\beta^2$, where β is a positive number, then

$$U_0(x) = \cosh(\beta x),$$

$$U_1(x) = \sinh(\beta x)/\beta,$$

$$V_0(x) = \cos(\beta x),$$

$$V_1(x) = \sin(\beta x)/\beta.$$

• For $A(x) = C(1 - x^2)^{-2}$, where the constant C is allowed to be negative for convenience. If we write $C = 2(4\alpha^2 - 1)$, then

$$U_0(x) = \sqrt{1 - x^2} \cosh\left[\alpha \log\left(\frac{1 + x}{1 - x}\right)\right],$$
$$U_1(x) = \frac{\sqrt{1 - x^2}}{2\alpha} \sinh\left[\alpha \log\left(\frac{1 + x}{1 - x}\right)\right].$$

• For $A(x) = C(1 - x^2)^{-1}$ with positive constant $C = (1 - \alpha^2)/2$,

$$U_0(x) = F(-\frac{1+\alpha}{4}, -\frac{1-\alpha}{4}; \frac{1}{2}; x^2)$$
$$U_1(x) = x F(\frac{1+\alpha}{4}, \frac{1-\alpha}{4}; \frac{3}{2}; x^2),$$

where F(a, b; c; x) stands for the hypergeometric function.

As a corollary, we get

Corollary 11 Let $C_2 = (1 + \beta_2^2)/2 \approx 1.52444$, where β_2 is the unique positive root of the equation

$$\int_0^1 x^2 F(\frac{3+i\beta}{4}, \frac{3-i\beta}{4}; \frac{3}{2}; x^2) F(\frac{1+i\beta}{4}, \frac{1-i\beta}{4}; \frac{3}{2}; x^2) dx$$
$$= \frac{2}{1+\beta^2}.$$

If a function $f \in \mathcal{M}(0)$ satisfies the inequality $|S_f(z)| \leq C_2/(1 - |z|^2)$ in |z| < 1, then f is a starlike function of order 1/2. The constant C_2 is sharp.

Final remark.

The Schwarzian radius of convexity (cf. Chiang 1994) must be zero unless we impose some restriction on the second coefficient c = f''(0)/2.

Proposition 12 Let φ be analytic in the unit disk. Suppose that $f_{\varphi,0}$ is univalent and that $f_{\varphi,c}$ is convex for every $c \in K(\varphi)$. Then, $\varphi = 0$.

This follows from the more geometric assertion.

Proposition 13 Let D be a proper subdomain of the complex plane \mathbb{C} . Suppose that L(D) is convex for each Möbius transformation L such that $L^{-1}(\infty) \notin D$. Then D is a disk or a halfplane.