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1. Introduction

If a univalent function f(z) = a0+a1z+a2z
2+ � � � in the unit disk D = fz 2 C ; jzj < 1g

has positive Taylor coeÆcients at the origin, various sharp estimates can be easily deduced.
For example, one can show the inequalities

jf(z)� a0 � a1z � � � � � akz
kj � f(jzj)� a0 � a1jzj � � � � � akjzjk

and

jf (k)(z)j � f (k)(jzj)
for k = 0; 1; 2; : : : :
As one immediately sees, a necessary condition for a univalent function f to have

positive Taylor coeÆcients is that the image domain 
 = f(D ) is symmetric in the real
axis. However, under the symmetricity assumption, it seems to be diÆcult to give a
suÆcient condition for that in terms of the shape of 
: For instance, the convexity of 

is not suÆcient. In fact, for constants 0 < c < 1 and � 2 (1;1) n Z with c� � 1 the
function

f(z) = (1 + cz)� =
1X
n=0

�
�

n

�
(cz)n

is univalent in D and has convex image because

Re

�
1 +

zf 00(z)

f 0(z)

�
= 1 + (�� 1)Re

cz

1 + cz
> 1� (�� 1)

c

1� c
� 0:

Note that
�
�

n

�
> 0 when n < � + 1 and

�
�

n

�
< 0 when � + 1 < n < � + 2:

In this talk, we will explain an approach to show positivity of the Taylor coeÆcients of
a speci�c conformal mapping of the interior of a conic section.

2. Conformal mappings onto domains bounded by conic sections

For k 2 [0;1); we set


k = fu+ iv 2 C ; u2 > k2(u� 1)2 + k2v2; u > 0g:
Note that 1 2 
k for all k: 
0 is nothing but the right half plane. When 0 < k < 1; 
k is
the unbounded domain enclosed by the right half of the hyperbola�

u+ k2=(1� k2)

k=(1� k2)

�2

� v2

1=(1� k2)
= 1

with focus at 1: 
1 becomes the unbounded domain enclosed by the parabola

v2 = 2u� 1
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with focus at 1: When k > 1; the domain 
k is the interior of the ellipse�
u+ k2=(1� k2)

k=(1� k2)

�2

+
v2

1=(k2 � 1)
= 1

with focus at 1: For every k; the domain 
k is convex and symmetric in the real axis.
Note also that 
k1

� 
k2
if 0 � k1 � k2:

Kanas and Wisniowska [2] treated the family 
k in their study of k-uniformly convex
functions and gave the explicit formulae for the conformal homeomorphisms pk : D ! 
k

determined by pk(0) = 1 and p0
k
(0) > 0:

In order to state their result, we prepare some notation. Let K(z; t) and K(t) be the
normal and complete elliptic integral, respectively, i.e.,

K(z; t) =
Z

z

0

dxp
(1� x2)(1� t2x2)

and K(t) = K(1; t): The quantity

�(t) =
�K(p1� t2)

2K(t)
is known as the modulus of the Groetszch ring D n [0; t] for 0 < t < 1: Note that �(t) is a
strictly decreasing smooth function. For details, see [1].

Proposition 1 (Kanas-Wisniowska [2]). The conformal map pk : D ! 
k with pk(0) = 1
and p0

k
(0) > 0 is given by

pk(z) =

8>>><
>>>:
(1 + z)=(1� z) if k = 0;

(1� k2)�1 cosh[Ck log(1 +
p
z)=(1�pz)]� k2=(1� k2) if 0 < k < 1;

1 + (2=�2)[log(1 +
p
z)=(1�pz)]2 if k = 1;

(k2 � 1)�1 sin[CkK((z=
p
t� 1)=(1�ptz); t)] + k2=(k2 � 1) if 1 < k;

where Ck = (2=�) arccos k for 0 < k < 1 and Ck = �=2K(t) and t 2 (0; 1) is chosen so

that k = cosh(�(t)=2) for k > 1:

3. Main Results

For each k 2 [0;1); we write

pk(z) = 1 + A1(k)z + A2(k)z
2 + � � �

for the conformal mapping pk of D onto 
k with pk(0) = 1 and p0
k
(0) > 0: By Carath�eodory's

theorem, jAn(k)j � 2 holds for each n � 1 and k 2 [0;1): Our main result is the following.

Theorem 2. An(k) � 0 for all n � 1 and k 2 [0; 1]:

Conjecture 1. An(k) � 0 for all n � 1 and k 2 [0;1):

Since p0(z) = 1 + 2z + 2z2 + 2z3 + � � � and

p1(z) = 1 +
2

�2

�
z +

z2

3
+
z3

5
+ � � �

�2

;

the assertion of the theorem is trivial for k = 0 and k = 1: In what follows, we consider
the cases when 0 < k < 1 and k > 1: Due to complexity of the representations of pk given
above, we try to simplify them.
We now consider the conformal mapping J of D onto bC n [�1; 1] de�ned by f(z) =

(z + z�1)=2: Since

J(e�s+it) = cosh s cos t� i sinh s sin t;
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the circle jzj = e�s is mapped by J onto the ellipse Es given by� u

cosh s

�2
+
� v

sinh s

�2
= 1

for s > 0 and the radial segment (0; eit) is mapped by J into the component Ht of the
hyperbola given by � u

cos t

�2
�
� v

sin t

�2
= 1; u cos t > 0;

for t 2 R with (2=�)t =2 Z:
Let Tn be the Chebyshev polynomial of degree n; i.e., Tn(cos �) = cos(n�): Then it is

well known that the n-fold mapping z 7! zn is conjugate under J to Tn; in other words,

J(zn) = Tn(J(z))

holds in jzj < 1: In particular, one can see that the ellipse Es is mapped by Tn onto Ens

and that the hyperbola Ht is mapped by Tn onto Hnt:
Applying the above argument to T2(w) = 2w2 � 1; we obtain the following.

Lemma 3. The Chebyshev polynomial T2(w) = 2w2 � 1 maps the domain bounded by

Ht and H��t onto the connected component of C nH2t containing �1: Also, T2 maps the

domain bounded by the ellipse Es onto the domain bounded by E2s:

On the basis of the above lemma, we can deduce another representation of pk:

Theorem 4. For k > 0; the function pk is written by pk(z) = 1 +Qk(
p
z)2; where

Qk(z) =

8>>><
>>>:

q
2

1�k2
sinh(Ck arctanhz) if 0 < k < 1;q

1
2�2

arctanhz if k = 1;q
2

k2�1
sin
�
C 0

k
K(z=ps; s)� if 1 < k:

Here, Ck = (2=�) arccos k when 0 < k < 1; and s 2 (0; 1) is chosen so that k = cosh�(s)
and C 0

k
= (�=2)=K(s) when k > 1:

Furthermore, the function Qk is odd and maps the unit disk conformally onto the domain

Dk = fx+ iy : (k � 1)x2 + (k + 1)y2 < 1g:
Note that Dk is the inside of a hyperbola when k < 1 and Dk is the interior of an ellipse

when k > 1: When k = 1; the domain Dk becomes the parallel strip �1=p2 < Im z <
1=
p
2: Also note that Dk is invariant under the involution z 7! �z:

4. Proof of the main result

In order to prove positivity of the Taylor coeÆcients of pk; it is enough to show that
of Qk thanks to Theorem 4. When 0 < k < 1; one can check that Qk satis�es the linear
di�erential equation

(1� z2)2w00 � 2z(1� z2)w0 � C2
k
w = 0

in D : Similarly, in the case when k > 1; the function Qk satis�es

(1� sz2)(1� z2=s)w00 � 2z((s + s�1)=2� z2)w0 +
C 0

k

2

s
w = 0

in D ; where s 2 (0; 1) is chosen so that k = cosh�(s) and C 0

k
= �=2K(s): Note that Qk(z)

satis�es Qk(0) = 0 and Q0

k
(0) > 0:

These two di�erential equations can be uni�ed by the following one:

(1� 2Mz2 + z4)w00 � 2z(M � z2)w0 + cw = 0:(1)
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In the �rst case, M = 1 and c = �C2
k
and in the second case, M = (s + s�1)=2 � 1 and

c = C 0

k

2=s = �2=4sK(s)2: Furthermore, the case when k = 1 can be included by letting
M = 1 and c = 0: At any event, one can check the inequality

2M � c > 0:(2)

In fact, when k > 1; this is equivalent to K(s) � �=2
p
1 + s2: However, this inequality

trivially holds because

K(s) =
Z 1

0

dxp
(1� x2)(1� s2x2)

Z 1

0

dxp
1� x2

=
�

2
:

Noting the above things, we now show the following lemma, which proves positivity of
the Taylor coeÆcients of Qk(z) when 0 < k < 1:

Lemma 5. Assume that M � 1 and c � 0: Let Q(z) be an analytic solution of (1)
in D with Q(0) = 0 and Q0(0) > 0: Then Q has Taylor expansion in the form Q(z) =P

1

n=0Bnz
2n+1 and the coeÆcients satisfy the inequalities

(2n+ 1)Bn � (2n� 1)Bn�1 > 0 and Bn > 0(3)

for each n � 1:

Proof. By the form of the di�erential equaiton, one can easily see that a solution Q with
the initial conditionQ(0) = 0 is an odd function. Therefore, the solution can be written as
above. Note that the condition Q0(0) implies B0 > 0: For convenience, we de�ne B�1 = 0:
Then, by the standard method, one can deduce the equation

(2n+ 2)(2n+ 3)Bn+1 �
�
2M(2n + 1)2 � c

	
Bn + 2n(2n� 1)Bn�1 = 0(4)

for n � 0: The assertion is then true for n = 0:
We now suppose that the assertion is true up to n: Then, by (4),

(2n+ 2)
�
(2n+ 3)Bn+1 � (2n+ 1)Bn

	
=
�
2M(2n + 1)2 � (2n+ 2)(2n+ 1) + jcj	Bn � 2n(2n� 1)Bn�1

��2(2n+ 1)2 � (2n+ 2)(2n+ 1)
	
Bn � 2n(2n� 1)Bn�1

=2n(2n+ 1)Bn � 2n(2n� 1)Bn�1 > 0

Therefore, the assertion is also true for n+ 1: By induction, the proof is completed.

When c > 0; we must modify the above argument. The assertion Bn > 0 seems to be
true in the case when M = (s+ s�1)=2 and c = C 0

k

2=s where k = cosh�(s): At least the
inequality B1 > 0 follows from (2).
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