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1. INTRODUCTION

If a univalent function f(2) = ag+a,2+asz*+--- in the unit disk D = {z € C; |z| < 1}
has positive Taylor coefficients at the origin, various sharp estimates can be easily deduced.
For example, one can show the inequalities

f(2) —ao— a1z — - — a2 < f(|2]) — a0 — ar|2| — - — aglz]"

and

[FP )] < F9(2)
for k=0,1,2,....

As one immediately sees, a necessary condition for a univalent function f to have
positive Taylor coefficients is that the image domain Q = f(D) is symmetric in the real
axis. However, under the symmetricity assumption, it seems to be difficult to give a
sufficient condition for that in terms of the shape of ). For instance, the convexity of 2
is not sufficient. In fact, for constants 0 < ¢ < 1 and «a € (1,00) \ Z with caw < 1 the

function }
f@%=u+%w:§:cg@@n

n=0

is univalent in D and has convex image because

2f"(2)
f(2)
Note that (2) >0 when n < a+1 and (z) <Owhena+1l<n<a+?2.

In this talk, we will explain an approach to show positivity of the Taylor coefficients of
a specific conformal mapping of the interior of a conic section.

(674

>1—-(a—-1
1+cz (a )1—0_

Re<1+ ):1+(a—URe

2. CONFORMAL MAPPINGS ONTO DOMAINS BOUNDED BY CONIC SECTIONS
For k € [0, 00), we set
U = {u+iv e Cu? > k*(u—1)*+ k**,u > 0}.

Note that 1 € € for all k. €y is nothing but the right half plane. When 0 < k < 1, Q0 is
the unbounded domain enclosed by the right half of the hyperbola

ut B/ (1=K)\" 0 _,
k/(1— k2) 1/(1—k2)
with focus at 1. €2; becomes the unbounded domain enclosed by the parabola

P =2u—1
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with focus at 1. When k£ > 1, the domain €2 is the interior of the ellipse
u+k2/(1— k?) 2+ v
k/(1—k?) 1/(k?=1)

with focus at 1. For every k, the domain (), is convex and symmetric in the real axis.
Note also that Q, D Q, if 0 < by < k.

Kanas and Wisniowska [2] treated the family Qj in their study of k-uniformly convex
functions and gave the explicit formulae for the conformal homeomorphisms py, : D — €2
determined by px(0) = 1 and p},(0) > 0.

In order to state their result, we prepare some notation. Let K(z,¢) and K(t) be the
normal and complete elliptic integral, respectively, i.e.,

‘ dx
K(z,t) =
0= Vi-)1 - Pa)
and KC(t) = KC(1,t). The quantity

TIC(V1 —t?)
pt) = — e —
2KC(t)
is known as the modulus of the Groetszch ring D\ [0,¢] for 0 < ¢ < 1. Note that p(t) is a
strictly decreasing smooth function. For details, see [1].

Proposition 1 (Kanas-Wisniowska [2]). The conformal map py, : D — Qy with p,(0) = 1
and p,(0) > 0 is given by

(1+2)/(1—2) if k=0,

(1 — k?)~' cosh[Cy log(1 + /2) /(1 — \/2)] — k*/(1 — k?) if0< k<1,
L+ (2/7%)[log(1 + /2)/(1 = V2)]” if k=1,

(k2 — 1) tsin[CLK((2/VE— 1) /(1 — Vi), t)] + kK2 /(K = 1)  if 1 <k,
where Cy, = (2/m) arccosk for 0 < k < 1 and Cy = w/2K(t) and t € (0,1) is chosen so
that k = cosh(u(t)/2) for k > 1.

pr(2) =

3. MAIN RESULTS

For each k € [0, 00), we write
pi(2) =14+ Ay (k)z + Ay (k)2 + - - -
for the conformal mapping py, of D onto Q with p,(0) = 1 and p},(0) > 0. By Carathéodory’s
theorem, |A,, (k)| < 2 holds for each n > 1 and k € [0, 00). Our main result is the following.
Theorem 2. A, (k) >0 for alln>1 and k € [0, 1].
Conjecture 1. A, (k) >0 for alln > 1 and k € [0, 00).

Since pg(z) =1+ 22 + 222+ 22° + -+ and

2 22 23 2
the assertion of the theorem is trivial for £ = 0 and k£ = 1. In what follows, we consider
the cases when 0 < k£ < 1 and £ > 1. Due to complexity of the representations of p; given
above, we try to simplify them.
We now consider the conformal mapping J of D onto C \ [—1, 1] defined by f(z) =
(z +271)/2. Since
J(e**") = cosh s cost — isinh ssint,
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the circle |z| = e~* is mapped by J onto the ellipse Fy given by

U 2 v 2 1
(coshs) +(sinhs) o

for s > 0 and the radial segment (0, e") is mapped by J into the component H; of the

hyperbola given by
U \2 v o\2
(—) — (—) =1, wucost >0,
cost sin ¢
for t € R with (2/7)t ¢ Z.
Let T,, be the Chebyshev polynomial of degree n, i.e., T, (cosf) = cos(nf). Then it is
well known that the n-fold mapping z — 2" is conjugate under J to 7},, in other words,

J(2") = Tu(J(2))

holds in |z| < 1. In particular, one can see that the ellipse E; is mapped by T, onto E,
and that the hyperbola H; is mapped by T, onto H,;.
Applying the above argument to T5(w) = 2w? — 1, we obtain the following.

Lemma 3. The Chebyshev polynomial Ty(w) = 2w? — 1 maps the domain bounded by
H; and H, _ onto the connected component of C\ Hy; containing —1. Also, Ty maps the
domain bounded by the ellipse E, onto the domain bounded by FEo.

On the basis of the above lemma, we can deduce another representation of py.

Theorem 4. For k > 0, the function py is written by pr(z) = 1 + Qr(y/2)?, where

\/ 5= sinh(Cy arctanhz) if 0<k<1,
Qr(z) = ,/# arctanhz if k=1,
= sin (C}K(z/4/5,9)) if 1<k.
Here, Cy, = (2/m) arccosk when 0 < k < 1, and s € (0,1) is chosen so that k = cosh p(s)
and C}, = (7/2)/K(s) when k > 1.
Furthermore, the function Qy is odd and maps the unit disk conformally onto the domain
Dy ={x+iy:(k—1)z*+ (k+1)y* < 1}.
Note that Dy is the inside of a hyperbola when £ < 1 and Dy, is the interior of an ellipse

when & > 1. When k& = 1, the domain Dj, becomes the parallel strip —1/v/2 < Im z <
1/ V2. Also note that D;, is invariant under the involution z > —z.

4. PROOF OF THE MAIN RESULT

In order to prove positivity of the Taylor coefficients of py, it is enough to show that
of @) thanks to Theorem 4. When 0 < k£ < 1, one can check that () satisfies the linear
differential equation

(1—22)*w" —22(1 — 22w’ — Ciw =0
in D. Similarly, in the case when k£ > 1, the function @)y satisfies

12
(1—s52H)(1 = 2%/s)w" —2z((s +s1)/2 — 2H)w' + C?kw =0

in D, where s € (0, 1) is chosen so that & = cosh p(s) and C}, = 7/2/K(s). Note that Q(z)
satisfies Q¢ (0) = 0 and Q},(0) > 0.
These two differential equations can be unified by the following one:

(1) (1 —2M2* 4+ 2Yw" — 22(M — 2*)w' + cw = 0.
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In the first case, M = 1 and ¢ = —C} and in the second case, M = (s +s7')/2 > 1 and
¢ = C4?/s = m%/4sK(s)?. Furthermore, the case when k = 1 can be included by letting
M =1 and ¢ = 0. At any event, one can check the inequality

(2) 2M —c > 0.
In fact, when £ > 1, this is equivalent to KC(s) > 7/2v/1 + s2. However, this inequality
trivially holds because
1 1
d d
K(s) = / v / T
0 \/(1—x2)(1—82$2) 0 \/1—$2 2
Noting the above things, we now show the following lemma, which proves positivity of
the Taylor coefficients of Qx(z) when 0 < k& < 1.
>

Lemma 5. Assume that M > 1 and ¢ < 0. Let Q(z) be an analytic solution of (1)
in D with Q(0) = 0 and Q'(0) > 0. Then Q has Taylor expansion in the form Q(z) =
S 00 o Baz®"th and the coefficients satisfy the inequalities

(3) 2n+1)B,— (2n—1)B, 1 >0 and B, >0
for each n > 1.

Proof. By the form of the differential equaiton, one can easily see that a solution () with
the initial condition @(0) = 0 is an odd function. Therefore, the solution can be written as
above. Note that the condition @’(0) implies By > 0. For convenience, we define B_; = 0.
Then, by the standard method, one can deduce the equation
(4) (2n+2)(2n+3)Byi1 — {2M(2n +1)* — ¢} B, + 2n(2n — 1)B, 1 =0
for n > 0. The assertion is then true for n = 0.
We now suppose that the assertion is true up to n. Then, by (4),
2n+2){(2n + 3)Bu1 — 2n+1)B, }

={2M(2n+1)> = (2n+2)(2n + 1) + |¢|} B, — 2n(2n — 1) B,_;

>{2(2n+1)* - (2n+2)(2n+1)} B, — 2n(2n — 1)B,_4

=2n(2n+1)B, —2n(2n — 1)B,,_1 >0

Therefore, the assertion is also true for n + 1. By induction, the proof is completed. [

When ¢ > 0, we must modify the above argument. The assertion B, > 0 seems to be
true in the case when M = (s + s ')/2 and ¢ = C}?/s where k = cosh j(s). At least the
inequality B; > 0 follows from (2).
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