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Abstract. This short note is a summary of the forthcoming paper [9] of the author.
We present a lower estimate of the Hausdorff content for a closed set with some density
condition in a metric space. As an application, we give some estimate of generalized
capacity for those sets.

1. Introduction

Let (X, ρ) be a complete metric space. A non-empty closed subset E of X is called
perfect if E has no isolated points, namely, each point a of E is an accumulation point of
E \{a}. A continuum and a Cantor set are typical examples of perfect sets. A non-empty
closed subset E of X is called uniformly perfect if there exist constants r0 ∈ (0,+∞] and
c ∈ (0, 1] such that E ∩ A(a, cr, r) 6= ∅ for each a ∈ E and r ∈ (0, r0), where

A(a, t, r) = {x ∈ X : t ≤ ρ(x, a) ≤ r}.
The notion of uniform perfectness first appeared in a paper [1] by Beardon and Pom-
merenke and was intensively studied by Pommerenke later (see [5] and [6]) in the case
when X is the complex plane. For a survey of this notion, see also [7] or [8].

The following characterization is important and, in fact, was a motivation of the present
investigation. In the sequel, we will use the notation

B(a, r) = {x ∈ X : ρ(x, a) ≤ r}
for a ∈ X and r > 0.

Theorem 1.1 (Pommerenke [5], Järvi-Vuorinen [3]). Let X be the complex plane C with
Euclidean metric and let E be a non-empty closed subset of X. Then the following condi-
tions are equivalent:

(1) E is uniformly perfect.
(2) There exists a positive constant c such that Cap(E∩B(a, r)) ≥ cr for r ∈ (0,diam E/2).
(3) There exist positive constants α and c such that H∞

α (E ∩ B(a, r)) ≥ crα for r ∈
(0,diam E/2).

Here Cap and H∞
α denote the logarithmic capacity and α-dimensional Hausdorff content,

respectively.

Definitions of the logarithmic capacity and Hausdorff contents will be given in the next
section. Note that the above result is indeed quantitative, i.e., the constants are estimated
by each other.
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What can we say for a set with weaker density condition than uniform perfectness?
We will answer to this question in this note. Suppose that a non-decreasing function
ϕ : (0, r0) → R is given so that

0 < ϕ(r) ≤ r, 0 < r < r0,

for some r0 ∈ (0,+∞]. We will say that a non-empty closed subset E of X is ϕ-perfect if
E ∩ Aϕ(a, r) 6= ∅ for each a ∈ E and 0 < r < min{r0, diam E/2}, where

Aϕ(a, r) = {x ∈ X : ϕ(r) ≤ ρ(x, a) ≤ r}.
We remark that ϕ-perfect sets are nothing but uniformly perfect sets when ϕ(r) = cr

for some constant 0 < c ≤ 1 and for r0 = +∞.
In Section 2, we give basic facts about generalized capacity and Hausdorff contents.

Section 3 will be devoted to presentation of estimates of Hausdorff contents, from which
estimates of generalized capacity will follow.

2. Hausdorff contents and Generalized capacity

Let h be a gauge function, in other words, a strictly increasing, continuous, positive
function on (0,+∞) with h(+0) = 0. We denote by Hh the Hausdorff h-measure and by
H∞

h the Hausdorff h-content. More precisely, for a bounded Borel set E ⊂ X and for
t ∈ (0,+∞], we set

Ht
h(E) = inf

E⊂∪jUj
diam Uj<t

∑
j

h(diam Uj),

Hh(E) = lim
t→0

Ht
h(E).

Note that H∞
h (E) > 0 if and only if Hh(E) > 0. When h(r) = rα, we also write

Ht
h(E) = Ht

α(E) and Hh(E) = Hα(E). The quantities Hα(E) and H∞
α (E) are called

the α-dimensional Hausdorff measure of E and α-dimensional Hausdorff content of E,
respectively.

The notion of generalized capacity traces back to Frostman’s thèse [2] in the case
when (X, ρ) is a Euclidean space. Kametani [4] treated the general case and deduced
fundamental properties of generalized capacities.

Let Φ : (0,∞) → R be a capacity kernel, namely, a continuous, strictly decreasing
function with Φ(+0) = +∞. We denote by P (E) the set of Borel probability measures µ
on X with µ(E) = 1 for a given Borel set E. The Φ-potential uΦ

µ of µ ∈ P (X) is given by

uΦ
µ (x) =

∫
X

Φ(ρ(x, y))dµ(y), x ∈ X.

Note that uΦ
µ is lower semi-continuous on X. Set

V Φ(E) = inf
µ∈P (E)

‖uΦ
µ‖∞,

where
‖uΦ

µ‖∞ = sup
x∈X

uΦ
µ (x).

The Φ-capacity CΦ(E) of E is defined by

CΦ(E) = Φ−1(V Φ(E)).

One can easily check that CΦ(E) ≤ diam E.
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When Φ(r) = − log r, Cap(E) = CΦ(E) is called the logarithmic capacity of E. When
Φ(r) = r−α, CΦ(E) is called the Newton capacity of order α > 0 (or (2 + α)-dimensional
Newton capacity).

The following generalizes a result of Erdös-Gillis (see [10, p. 66]).

Theorem 2.1 (Kametani [4]). Suppose that X is a complete separable metric space. Let
h be a gauge function and E be a compact subset of X. When Φ(r) = 1/h(r), the condition
Hh(E) < ∞ implies CΦ(E) = 0.

We also obtain the following weaker but quantitative result:

Lemma 2.2. Suppose that X is a complete metric space. Let h be a gauge function and
E be a compact subset of X. If Φ(r) = 1/h(r),

1

V Φ(E)
≤ H∞

h (E).

An upper estimate for V Φ(E) is also deduced in the following way when (X, ρ) is a
Euclidean space.

Theorem 2.3. Assume that X = Rn, ρ(x, y) = |x − y| and that

−
∫ r1

0

h(r)dΦ(r) < +∞
for some r1 > 0. For a compact subset E of X,

V Φ(E) ≤ Φ(r0) − An

H∞
h (E)

∫ r0

0

h(t)dΦ(t)

holds, where r0 = 2diam E and An is a constant depending only on n.

Corollary 2.4 (Kametani [4]). Under the same assumptions, H∞
h (E) > 0 ⇒ CΦ(E) >

0.

3. Main results

Let h be a gauge function. We define the functions ε1 and ε2 by the relations

h(ϕ(x/3)) =
exp ε1(x)

2
h(x)

and

h(2x) =
exp ε2(x)

2
h(x)

for sufficiently small x > 0.
For a function λ : (0, x0) → R, we say that a function ν : (0, x0) → R is a monotone

majorant of λ if ν is increasing and satisfies |λ(x)| ≤ ν(x) for 0 < x < x0.

Theorem 3.1. Let (X, ρ) be a complete metric space. Suppose that ϕ satisfies ϕ(r) ≤ cr
in 0 < r < r0 for some constant 0 < c < 1. If there is a monotone majorant ω1 of ε1 such

that
∫ r0

0
ω1(r)dr

r
< +∞, then

H∞
h (E) ≥ h(δ0)

2
exp

(
−ω1(δ0) − 1

log(6/c)

∫ δ0

0

ω1(x)dx

x

)

holds for any ϕ-perfect subset E of X, where δ0 is an arbitrary number satisfying 0 < δ0 <
min{r0, diam E/2}. In particular, H∞

h (E) > 0. In addition, if c < 1/4 and if there is a
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monotone majorant ω2 of ε2 such that
∫ r0

0
ω2(r)dr

r
< +∞, then for each d0 ∈ (0, r0) there

exists a ϕ-perfect compact set E ⊂ [0, d0] such that

Hh(E) ≤ h(d0) exp

(
ω2(d0) +

1

log(1/2c)

∫ d0

0

ω2(x)dx

x

)
,

and thus 0 < H∞
h (E) ≤ Hh(E) < +∞.

When X is a Euclidean space, by Theorem 2.3, we may deduce a lower estimate of
generalized capacities for ϕ-perfects sets, though we do not state it explicitly here.

Corollary 3.2. Let (X, ρ) be a complete metric space. If ϕ(r) = cr, 0 < r < r0 for
some constants c ∈ (0, 1] and r0 > 0, then any ϕ-perfect set E satisfies H-dimE ≥
log 2/ log(6/c).

This fact was first shown by Järvi and Vuorinen [3] when X = Rn with a lower bound
for the Hausdorff dimension depending on the dimension n.

We cannot apply the above theorem to the case when ϕ(r) = ctα for constants c > 0
and α > 1 because the Dini-type condition is not satisfied. The following results cover
this case.

Theorem 3.3. Let (X, ρ) be a complete metric space. Suppose that ϕ satisfies ϕ(r) ≤ crα

in 0 < r < r0 for some constants c > 0 and α > 1. If there is a monotone majorant ω1 of
ε1 such that

∫ r0

0

ω1(r)dr
r log(2r0/r)

< +∞, then

H∞
h (E) ≥ h(δ0)

2
exp

(
−ω1(δ0) − 1

log α

∫ δ0

0

ω1(x)dx

x log(M/x)

)

holds for any ϕ-perfect subset E of X, where δ0 is an arbitrary number satisfying cδα−1
0 ≤ 1

and 0 < δ0 < min{r0, diam E} and

M =

(
2 · 3α

c

)1/(α−1)

(> δ0).

In particular, H∞
h (E) > 0.

Theorem 3.4. Under the same assumptions, if, in addition, there is a monotone majo-

rant ω2 of ε2 such that
∫ r0

0
ω2(r)dr

r log(2r0/r)
< +∞, then for each d0 ∈ (0, r0) with cdα−1

0 < 1/4

there exists a ϕ-perfect compact set E ⊂ [0, d0] such that

Hh(E) ≤ h(d0) exp

(
ω2(d0) +

1

log α

∫ d0

0

ω2(x)dx

x log(M/x)

)

and thus 0 < H∞
h (E) ≤ Hh(E) < +∞.

If we consider the particular choice ϕ(r) = crα with α > 1, we obtain the following
result as an immediate consequence.

Theorem 3.5. Let (X, ρ) be a complete metric space. Let ϕ(r) = crα, 0 < r < r0, for
constants c > 0, α > 1, r0 > 0 with crα

0 ≤ r0 and let h(t) = (log(2r0/t))
−γ , 0 < t <

r0, where γ = log 2
log α

. Then, every ϕ-perfect compact set E ⊂ X satisfies H∞
h (E) > 0.

Furthermore, there is a compact set E ⊂ R such that 0 < H∞
h (E) ≤ Hh(E) < ∞.
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Proof. Theorems 3.3 and 3.4 are now applicable. Thus we obtain the required assertion.

By using Theorem 2.3 and the Erdös-Gillis theorem (Theorem 2.1 in the case when
h(r) = 1/ log(1/r) for r small enough), we have the following.

Corollary 3.6. Under the same assumptions, every ϕ-perfect set in a Euclidean space
has positive logarithmic capacity whenever 1 < α < 2. On the other hand, when α ≥ 2,
there is a compact ϕ-perfect subset E of R of logarithmic capacity zero.
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