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Setup and uniform perfectness.

Let (X, p) be a complete metric space. In what
follows, otherwise stated, the space X is al-
ways assumed to be a complete separable met-
ric space, although some results may be valid
for more general spaces.

A non-empty closed subset E of X is called
perfect if £ has no isolated points, namely,
each point a is an accumulation point of E\{a}.

Typical examples are continua or Cantor sets
in the Euclidean space R™.



Uniform perfectness.

A non-empty closed subset E of X is called
uniformly perfect if 3rg € (0, +oc], Jc € (0, 1]
s.t. EnA(a,cr,r) #= 0 for each a € E and
r € (0,7rg), where

A(a,t,r) ={x e X :t < p(zx,a) <r}.

This notion first appeared in a paper by Bear-
don and Pommerenke in 1978 and was inves-
tigated more by Pommerenke later.

We will use the notation

B(a,r) ={zx € X : p(z,a) <r}.



Characterizations.

Theorem 1 (Pommerenke, Jarvi-Vuorinen)
Let X = R?2 = C and let E be a non-empty
closed subset of X. TFAE.

1. F is uniformly perfect.

2. drg > 0,dc > 0 s.t.
Cap(EnNnB(a,r)) >cr forVr e (0,rg).

3. drg > 0,da > 0,dc > 0 s.t.
HS(E N B(a,r)) > cr®  for Vr € (0,7rq).

Here Cap and Hg® mean the logarithmic ca-
pacity and o-dimensional Hausdorff content,
respectively.

Note: This theorem is quantitative, i.e., the
constants are estimated by each other. Some
are generalized to the case X = R", n > 2.



A more refined notion of perfectness.

Suppose that a non-decreasing function
v :(0,79) — R is given so that

O<op(r)<r, 0<Vr<rg,

for some rg € (0, +o0]. We will say that a non-
empty closed subset E of X is gp-perfect if
ENnAp(a,7) # 0 for each a € E and 0 < r <
min{rg,diam E/2}, where

Ap(a,r) = {o € X;(r) < p(,a) <r}.

Note: p-perfect sets are nothing but uniformly
perfect sets when ¢(r) = cr forsome 0 < ¢ < 1.



Hausdorff contents and measures.

Let A~ be a gauge function, in other words, a
strictly increasing, continuous, positive func-
tion on (0,4o0) with A(4+0) = 0. We denote
by H; the Hausdorff h-measure and by H;L’O the
Hausdorff h-content.

More precisely, for a bounded Borel set £ C X
and for t € (0, 4], we set

t
H(E) = EIBfU Zh(dlamU)
d|amU <t J

Hy,(B) = lim 1}, (E).

Note that Hjl’O(E) > 0 if and only if H;,(E) > 0.

When h(r) = r%, we also write H} (E) = HL(E).



Generalized capacity.

This notion goes back to Frostman’'s these
(1935) in the case when (X, p) is a Euclidean
space. Kametani (1945) treats the general
case and deduce fundamental properties of gen-
eralized capacities.

®d : (0,00) — R : a capacity kernel, namely,
a continuous, strictly decreasing function with
P (+0) = +oo0.

P(FE) : the set of Borel probability measures u
on X with u(F) =1 for a Borel set FE.

ul : the ®-potential of u € P(X) given by

uf @) = [ ®(p(a.y)dn(y), @€ X.

Note: uff is lower semi-continuous on X.



Set

VO(E) = inf |jus|oos
(B) = dnof lhule

where

P P
U = sup u,, (x).
H W HOO eX W

C®(E) : the ®-capacity of E defined by
CP(E) = o~ (V®(E)).
Note that C®(F) < diamE.

When &(r) = —logr, Cap(E) = C®(E) is called
the logarithmic capacity of E. When &(r) =
r~@ C®(E) is called the Newton capacity of
order a« > 0 (or (2 + «)-dimensional Newton
capacity).



Relation between Hausdorff contents and
generalized capacities.

The following generalizes a result of Erdos-
Gillis.

Theorem 2 (Kametani (1945)) Suppose that
X is a complete separable metric space. Let h
be a gauge function and E be a compact sub-
set of X. When ®(r) = 1/h(r), the condition
Hy(E) < oo implies C®(E) = 0.

We also obtain the following weaker but quan-
titative result:

Lemma 3 Suppose that X is a complete met-
ric space. Let h be a gauge function and E be
a compact subset of X. If ®(r) = 1/h(r),

1 o
V(B < Hy (E).




An upper estimate for V®(FE) is also deduced
in the following way when (X, p) is Euclidean.

Theorem 4 Assume that X = R", p(x,y) =
|z — y| and that

— /07“1 h(r)dd(r) < +o0

for some r1 > 0. For a compact subset E of X,

VP(E) < d(rg) — h(t)dd(t)

An T0
HPC(E) /0
holds, where rog = 2diam E and A, is a con-
stant depending only on n.

Corollary 5 (Kametani) Under the same as-
sumptions, H?°(E) > 0 = C®(E) > 0.



Main Theorem 1.

Let A: (0,r7g) — (0,400) be a gauge function.
We define the functions ¢; by the relations

h(p(a/3)) = TP )

and

expeos(x)

h(2x) = h(x)

for sufficiently small .

For a function X : (0,z29) — R, we say that a
function v : (0,zg) — R is a monotone majo-
rant of A if v is increasing and satisfies |\ (x)| <
v(x) for 0 < x < xg.



Theorem 6 Let (X,p) be a complete metric
space. Suppose that ¢ satisfies o(r) < cr in
O < r < rg for some constant 0 < ¢ < 1. If
there is a monotone majorant wy oOf €1 such
that [0 <i(Ndr — oo then

HEO(E) >

h(do) exp (—w1(50) B Iog(6/c) /

holds for any o-perfect subset E of X, where
do IS an arbitrary number satisfying 0 < dg <
min{rg,diam E/2}. In particular, H°(E) > 0. In
addition, if ¢ < 1/4 and if there is a monotone
majorant wo Of €5 such that fro M < 400,
then for each dg € (0,rg) there exists a -
perfect compact set E C [0,dg] such that

00 wl(az)daj>

Hp(E) <

h(do) exp (wz(do) +

Y

do wg(az)daj
Iog(1/2c) / >

and thus 0 < H°(E) < Hp(E) < +o0.



Remark 1: When X is a Euclidean space, by
Theorem 4, we may deduce a lower estimate
of generalized capacities for p-perfects sets.

Corollary 7 Let (X,p) be a complete metric
space. If o(r) = cr, 0 < r < rg for some con-
stants c € (0, 1] and rq > 0O, then any e-perfect
set E satisfies H-dimFE > log2/log(6/c).

Remark 2: This fact was first shown by Jarvi-
Vuorinen (1996) when X = R" with a lower
bound depending on the dimension n.

Remark 3: We cannot apply the above theo-
rem to the case when ¢(r) = ct® for constants
c > 0 and 8 > 0 because the Dini-type condi-
tion is not satisfied.



Main T heorem 2.

Theorem 8 Let (X,p) be a complete metric
space. Suppose that ¢ satisfies p(r) < cr® in
O <r <rg for some constants c >0 and o > 1.
If there is a monotone majorant w1 of €1 such

that 50 bt~ < too, then
Hy (B) >
h(do) 1 00 wi(x)dx
> P <_w1(50) ~ log a/() T Iog(M/a:)>

holds for any op-perfect subset E of X, where
do IS an arbitrary number satisfying c58‘_1 <1
and 0 < §g < min{rg,diam E} and

. aa)\ 1/(a=1)
M = (2 3 > (> dp).

C

In particular, Hjl’O(E) > 0.



Theorem 9 Under the same assumptions, if,
in addition, there is a monotone majorant wo

of 5 such that fgorlgégzg%) < +o00, then for

each dg € (0,rg) with cdg_l < 1/4 there exists
a p-perfect compact set E C [0,dg] such that

Hp(E) <

do  wo(x)dx
h(dp) exp (“’Q(dO) + Io; e /o O T Iozg((l\)j/a?)>

and thus 0 < H°(E) < Hp(E) < +o0.




An application.

Set o(r) = cr® (0 < r < rg) for constants ¢ >
O,a > 1,79 > 0 with crg < rg. For this, we
take h(t) = (log(2rg/t))~7, 0 < t < rg, where

— :ggi. Then Theorems 8 and 9 are now
applicable. Thus, as a corollary, we obtain the

following.

Theorem 10 Let (X, p) be a complete metric
space. Under the above assumptions, every -
perfect compact set E C X satisfies Hy°(E) >
0. Furthermore, there is a compact set E C R
such that 0 < H°(E) < Hp(E) < oo.

By using Erdos-Gillis theorem, we have

Corollary 11 Under the same assumptions, ev-
ery p-perfect set has positive logarithmic ca-
pacity whenever 1 < a < 2. On the other hand,
when o > 2, there is a compact p-perfect sub-
set E of R of logarithmic capacity zero.



