A Refined Notion of Perfectness and Potential Theory

Toshiyuki Sugawa

Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526 Japan sugawa@math.sci.hiroshima-u.ac.jp http://sugawa@cajpn.org/

July 28, 2004, ICU, Tokyo

Setup and uniform perfectness.

Let (X, ρ) be a complete metric space. In what follows, otherwise stated, the space X is always assumed to be a complete separable metric space, although some results may be valid for more general spaces.

A non-empty closed subset E of X is called **perfect** if E has no isolated points, namely, each point a is an accumulation point of $E \setminus \{a\}$.

Typical examples are continua or Cantor sets in the Euclidean space \mathbb{R}^n .

Uniform perfectness.

A non-empty closed subset E of X is called **uniformly perfect** if $\exists r_0 \in (0, +\infty], \exists c \in (0, 1]$ s.t. $E \cap A(a, cr, r) \neq \emptyset$ for each $a \in E$ and $r \in (0, r_0)$, where

$$A(a,t,r) = \{x \in X : t \le \rho(x,a) \le r\}.$$

This notion first appeared in a paper by Beardon and Pommerenke in 1978 and was investigated more by Pommerenke later.

We will use the notation

$$B(a,r) = \{x \in X : \rho(x,a) \le r\}.$$

Characterizations.

Theorem 1 (Pommerenke, Järvi-Vuorinen) Let $X = \mathbb{R}^2 = \mathbb{C}$ and let E be a non-empty closed subset of X. TFAE.

1. E is uniformly perfect.

2. $\exists r_0 > 0, \exists c > 0 \ s.t.$ Cap $(E \cap B(a, r)) \ge cr$ for $\forall r \in (0, r_0).$

3.
$$\exists r_0 > 0, \exists \alpha > 0, \exists c > 0$$
 s.t.

 $\mathcal{H}^{\infty}_{\alpha}(E \cap B(a,r)) \geq cr^{\alpha} \quad \text{for } \forall r \in (0,r_0).$

Here Cap and $\mathcal{H}^{\infty}_{\alpha}$ mean the logarithmic capacity and α -dimensional Hausdorff content, respectively.

Note: This theorem is quantitative, i.e., the constants are estimated by each other. Some are generalized to the case $X = \mathbb{R}^n$, $n \ge 2$.

A more refined notion of perfectness.

Suppose that a non-decreasing function $\varphi: (0, r_0) \rightarrow \mathbb{R}$ is given so that

$$0 < \varphi(r) \le r, \quad 0 < \forall r < r_0,$$

for some $r_0 \in (0, +\infty]$. We will say that a nonempty closed subset E of X is φ -perfect if $E \cap A_{\varphi}(a, r) \neq \emptyset$ for each $a \in E$ and $0 < r < \min\{r_0, \dim E/2\}$, where

$$A_{\varphi}(a,r) = \{ x \in X; \varphi(r) \le \rho(x,a) \le r \}.$$

Note: φ -perfect sets are nothing but uniformly perfect sets when $\varphi(r) = cr$ for some $0 < c \leq 1$.

Hausdorff contents and measures.

Let h be a gauge function, in other words, a strictly increasing, continuous, positive function on $(0, +\infty)$ with h(+0) = 0. We denote by \mathcal{H}_h the Hausdorff h-measure and by \mathcal{H}_h^∞ the Hausdorff h-content.

More precisely, for a bounded Borel set $E \subset X$ and for $t \in (0, +\infty]$, we set

$$\mathcal{H}_{h}^{t}(E) = \inf_{\substack{E \subset \cup_{j} U_{j} \\ \text{diam} U_{j} < t}} \sum_{j} h(\text{diam} U_{j}),$$
$$\mathcal{H}_{h}(E) = \lim_{t \to 0} \mathcal{H}_{h}^{t}(E).$$

Note that $\mathcal{H}_h^{\infty}(E) > 0$ if and only if $\mathcal{H}_h(E) > 0$.

When $h(r) = r^{\alpha}$, we also write $\mathcal{H}_{h}^{t}(E) = \mathcal{H}_{\alpha}^{t}(E)$.

Generalized capacity.

This notion goes back to Frostman's thèse (1935) in the case when (X, ρ) is a Euclidean space. Kametani (1945) treats the general case and deduce fundamental properties of generalized capacities.

 Φ : $(0,\infty) \rightarrow \mathbb{R}$: a capacity kernel, namely, a continuous, strictly decreasing function with $\Phi(+0) = +\infty$.

P(E): the set of Borel probability measures μ on X with $\mu(E) = 1$ for a Borel set E.

 u^{Φ}_{μ} : the Φ -potential of $\mu \in P(X)$ given by

$$u^{\Phi}_{\mu}(x) = \int_X \Phi(\rho(x,y)) d\mu(y), \quad x \in X.$$

Note: u^{Φ}_{μ} is lower semi-continuous on X.

Set

$$V^{\Phi}(E) = \inf_{\mu \in P(E)} \|u^{\Phi}_{\mu}\|_{\infty},$$

where

$$\|u^{\Phi}_{\mu}\|_{\infty} = \sup_{x \in X} u^{\Phi}_{\mu}(x).$$

 $C^{\Phi}(E)$: the Φ -capacity of E defined by

$$C^{\Phi}(E) = \Phi^{-1}(V^{\Phi}(E)).$$

Note that $C^{\Phi}(E) \leq \operatorname{diam} E$.

When $\Phi(r) = -\log r$, $\operatorname{Cap}(E) = C^{\Phi}(E)$ is called the logarithmic capacity of E. When $\Phi(r) = r^{-\alpha}$, $C^{\Phi}(E)$ is called the Newton capacity of order $\alpha > 0$ (or $(2 + \alpha)$ -dimensional Newton capacity).

Relation between Hausdorff contents and generalized capacities.

The following generalizes a result of Erdös-Gillis.

Theorem 2 (Kametani (1945)) Suppose that X is a complete separable metric space. Let h be a gauge function and E be a compact subset of X. When $\Phi(r) = 1/h(r)$, the condition $\mathcal{H}_h(E) < \infty$ implies $C^{\Phi}(E) = 0$.

We also obtain the following weaker but quantitative result:

Lemma 3 Suppose that X is a complete metric space. Let h be a gauge function and E be a compact subset of X. If $\Phi(r) = 1/h(r)$,

$$\frac{1}{V^{\Phi}(E)} \leq \mathcal{H}_h^{\infty}(E).$$

An upper estimate for $V^{\Phi}(E)$ is also deduced in the following way when (X, ρ) is Euclidean.

Theorem 4 Assume that $X = \mathbb{R}^n$, $\rho(x, y) = |x - y|$ and that

$$-\int_0^{r_1} h(r)d\Phi(r) < +\infty$$

for some $r_1 > 0$. For a compact subset E of X,

$$V^{\Phi}(E) \leq \Phi(r_0) - \frac{A_n}{\mathcal{H}_h^{\infty}(E)} \int_0^{r_0} h(t) d\Phi(t)$$

holds, where $r_0 = 2$ diam E and A_n is a constant depending only on n.

Corollary 5 (Kametani) Under the same assumptions, $\mathcal{H}_h^{\infty}(E) > 0 \Rightarrow C^{\Phi}(E) > 0$.

Main Theorem 1.

Let $h: (0, r_0) \rightarrow (0, +\infty)$ be a gauge function. We define the functions ε_j by the relations

$$h(\varphi(x/3)) = \frac{\exp \varepsilon_1(x)}{2}h(x)$$

and

$$h(2x) = \frac{\exp \varepsilon_2(x)}{2} h(x)$$

for sufficiently small x.

For a function $\lambda : (0, x_0) \to \mathbb{R}$, we say that a function $\nu : (0, x_0) \to \mathbb{R}$ is a monotone majorant of λ if ν is increasing and satisfies $|\lambda(x)| \le \nu(x)$ for $0 < x < x_0$.

Theorem 6 Let (X, ρ) be a complete metric space. Suppose that φ satisfies $\varphi(r) \leq cr$ in $0 < r < r_0$ for some constant 0 < c < 1. If there is a monotone majorant ω_1 of ε_1 such that $\int_0^{r_0} \frac{\omega_1(r)dr}{r} < +\infty$, then

$$\frac{\mathcal{H}_{h}^{\infty}(E) \geq}{\frac{h(\delta_{0})}{2}} \exp\left(-\omega_{1}(\delta_{0}) - \frac{1}{\log(6/c)} \int_{0}^{\delta_{0}} \frac{\omega_{1}(x)dx}{x}\right)$$

holds for any φ -perfect subset E of X, where δ_0 is an arbitrary number satisfying $0 < \delta_0 < \min\{r_0, \dim E/2\}$. In particular, $\mathcal{H}_h^{\infty}(E) > 0$. In addition, if c < 1/4 and if there is a monotone majorant ω_2 of ε_2 such that $\int_0^{r_0} \frac{\omega_2(r)dr}{r} < +\infty$, then for each $d_0 \in (0, r_0)$ there exists a φ -perfect compact set $E \subset [0, d_0]$ such that

$$\begin{aligned} \mathcal{H}_h(E) &\leq \\ h(d_0) \exp\left(\omega_2(d_0) + \frac{1}{\log(1/2c)} \int_0^{d_0} \frac{\omega_2(x)dx}{x}\right), \\ \text{and thus } 0 &< \mathcal{H}_h^\infty(E) \leq \mathcal{H}_h(E) < +\infty. \end{aligned}$$

Remark 1: When X is a Euclidean space, by Theorem 4, we may deduce a lower estimate of generalized capacities for φ -perfects sets.

Corollary 7 Let (X, ρ) be a complete metric space. If $\varphi(r) = cr$, $0 < r < r_0$ for some constants $c \in (0, 1]$ and $r_0 > 0$, then any φ -perfect set E satisfies H-dim $E \ge \log 2/\log(6/c)$.

Remark 2: This fact was first shown by Järvi-Vuorinen (1996) when $X = \mathbb{R}^n$ with a lower bound depending on the dimension n.

Remark 3: We cannot apply the above theorem to the case when $\varphi(r) = ct^{\beta}$ for constants c > 0 and $\beta > 0$ because the Dini-type condition is not satisfied.

Main Theorem 2.

Theorem 8 Let (X, ρ) be a complete metric space. Suppose that φ satisfies $\varphi(r) \leq cr^{\alpha}$ in $0 < r < r_0$ for some constants c > 0 and $\alpha > 1$. If there is a monotone majorant ω_1 of ε_1 such that $\int_0^{r_0} \frac{\omega_1(r)dr}{r\log(2r_0/r)} < +\infty$, then

$$\frac{\mathcal{H}_{h}^{\infty}(E) \geq}{\frac{h(\delta_{0})}{2}} \exp\left(-\omega_{1}(\delta_{0}) - \frac{1}{\log\alpha} \int_{0}^{\delta_{0}} \frac{\omega_{1}(x)dx}{x\log(M/x)}\right)$$

holds for any φ -perfect subset E of X, where δ_0 is an arbitrary number satisfying $c\delta_0^{\alpha-1} \leq 1$ and $0 < \delta_0 < \min\{r_0, \dim E\}$ and

$$M = \left(\frac{2 \cdot 3^{\alpha}}{c}\right)^{1/(\alpha - 1)} (> \delta_0).$$

In particular, $\mathcal{H}_{h}^{\infty}(E) > 0$.

Theorem 9 Under the same assumptions, if, in addition, there is a monotone majorant ω_2 of ε_2 such that $\int_0^{r_0} \frac{\omega_2(r)dr}{r\log(2r_0/r)} < +\infty$, then for each $d_0 \in (0, r_0)$ with $cd_0^{\alpha-1} < 1/4$ there exists a φ -perfect compact set $E \subset [0, d_0]$ such that

$$\begin{aligned} \mathcal{H}_h(E) \leq \\ h(d_0) \exp\left(\omega_2(d_0) + \frac{1}{\log \alpha} \int_0^{d_0} \frac{\omega_2(x)dx}{x\log(M/x)}\right) \\ \text{and thus } 0 < \mathcal{H}_h^\infty(E) \leq \mathcal{H}_h(E) < +\infty. \end{aligned}$$

An application.

Set $\varphi(r) = cr^{\alpha}$ ($0 < r < r_0$) for constants $c > 0, \alpha > 1, r_0 > 0$ with $cr_0^{\alpha} \le r_0$. For this, we take $h(t) = (\log(2r_0/t))^{-\gamma}$, $0 < t < r_0$, where $\gamma = \frac{\log 2}{\log \alpha}$. Then Theorems 8 and 9 are now applicable. Thus, as a corollary, we obtain the following.

Theorem 10 Let (X, ρ) be a complete metric space. Under the above assumptions, every φ perfect compact set $E \subset X$ satisfies $\mathcal{H}_h^{\infty}(E) >$ 0. Furthermore, there is a compact set $E \subset \mathbb{R}$ such that $0 < \mathcal{H}_h^{\infty}(E) \leq \mathcal{H}_h(E) < \infty$.

By using Erdös-Gillis theorem, we have

Corollary 11 Under the same assumptions, every φ -perfect set has positive logarithmic capacity whenever $1 < \alpha < 2$. On the other hand, when $\alpha \ge 2$, there is a compact φ -perfect subset E of \mathbb{R} of logarithmic capacity zero.