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Setup and uniform perfectness.

Let (X, ρ) be a complete metric space. In what

follows, otherwise stated, the space X is al-

ways assumed to be a complete separable met-

ric space, although some results may be valid

for more general spaces.

A non-empty closed subset E of X is called

perfect if E has no isolated points, namely,

each point a is an accumulation point of E\{a}.

Typical examples are continua or Cantor sets

in the Euclidean space Rn.



Uniform perfectness.

A non-empty closed subset E of X is called

uniformly perfect if ∃r0 ∈ (0,+∞], ∃c ∈ (0,1]

s.t. E ∩ A(a, cr, r) 6= ∅ for each a ∈ E and

r ∈ (0, r0), where

A(a, t, r) = {x ∈ X : t ≤ ρ(x, a) ≤ r}.

This notion first appeared in a paper by Bear-

don and Pommerenke in 1978 and was inves-

tigated more by Pommerenke later.

We will use the notation

B(a, r) = {x ∈ X : ρ(x, a) ≤ r}.



Characterizations.

Theorem 1 (Pommerenke, Järvi-Vuorinen)
Let X = R2 = C and let E be a non-empty
closed subset of X. TFAE.

1. E is uniformly perfect.

2. ∃r0 > 0, ∃c > 0 s.t.

Cap(E ∩ B(a, r)) ≥ cr for ∀r ∈ (0, r0).

3. ∃r0 > 0, ∃α > 0,∃c > 0 s.t.

H∞
α (E ∩ B(a, r)) ≥ crα for ∀r ∈ (0, r0).

Here Cap and H∞
α mean the logarithmic ca-

pacity and α-dimensional Hausdorff content,
respectively.

Note: This theorem is quantitative, i.e., the
constants are estimated by each other. Some
are generalized to the case X = Rn, n ≥ 2.



A more refined notion of perfectness.

Suppose that a non-decreasing function

ϕ : (0, r0) → R is given so that

0 < ϕ(r) ≤ r, 0 < ∀r < r0,

for some r0 ∈ (0,+∞]. We will say that a non-

empty closed subset E of X is ϕ-perfect if

E ∩ Aϕ(a, r) 6= ∅ for each a ∈ E and 0 < r <

min{r0,diamE/2}, where

Aϕ(a, r) = {x ∈ X;ϕ(r) ≤ ρ(x, a) ≤ r}.

Note: ϕ-perfect sets are nothing but uniformly

perfect sets when ϕ(r) = cr for some 0 < c ≤ 1.



Hausdorff contents and measures.

Let h be a gauge function, in other words, a

strictly increasing, continuous, positive func-

tion on (0,+∞) with h(+0) = 0. We denote

by Hh the Hausdorff h-measure and by H∞
h the

Hausdorff h-content.

More precisely, for a bounded Borel set E ⊂ X

and for t ∈ (0,+∞], we set

Ht
h(E) = inf

E⊂∪jUj
diamUj<t

∑
j

h(diamUj),

Hh(E) = lim
t→0

Ht
h(E).

Note that H∞
h (E) > 0 if and only if Hh(E) > 0.

When h(r) = rα, we also write Ht
h(E) = Ht

α(E).



Generalized capacity.

This notion goes back to Frostman’s thèse

(1935) in the case when (X, ρ) is a Euclidean

space. Kametani (1945) treats the general

case and deduce fundamental properties of gen-

eralized capacities.

Φ : (0,∞) → R : a capacity kernel, namely,

a continuous, strictly decreasing function with

Φ(+0) = +∞.

P (E) : the set of Borel probability measures µ

on X with µ(E) = 1 for a Borel set E.

uΦ
µ : the Φ-potential of µ ∈ P (X) given by

uΦ
µ (x) =

∫
X

Φ(ρ(x, y))dµ(y), x ∈ X.

Note: uΦ
µ is lower semi-continuous on X.



Set

V Φ(E) = inf
µ∈P(E)

‖uΦ
µ ‖∞,

where

‖uΦ
µ ‖∞ = sup

x∈X
uΦ

µ (x).

CΦ(E) : the Φ-capacity of E defined by

CΦ(E) = Φ−1(V Φ(E)).

Note that CΦ(E) ≤ diamE.

When Φ(r) = − log r, Cap(E) = CΦ(E) is called

the logarithmic capacity of E. When Φ(r) =

r−α, CΦ(E) is called the Newton capacity of

order α > 0 (or (2 + α)-dimensional Newton

capacity).



Relation between Hausdorff contents and

generalized capacities.

The following generalizes a result of Erdös-

Gillis.

Theorem 2 (Kametani (1945)) Suppose that

X is a complete separable metric space. Let h

be a gauge function and E be a compact sub-

set of X. When Φ(r) = 1/h(r), the condition

Hh(E) < ∞ implies CΦ(E) = 0.

We also obtain the following weaker but quan-

titative result:

Lemma 3 Suppose that X is a complete met-

ric space. Let h be a gauge function and E be

a compact subset of X. If Φ(r) = 1/h(r),

1

V Φ(E)
≤ H∞

h (E).



An upper estimate for V Φ(E) is also deduced

in the following way when (X, ρ) is Euclidean.

Theorem 4 Assume that X = Rn, ρ(x, y) =

|x − y| and that

−
∫ r1

0
h(r)dΦ(r) < +∞

for some r1 > 0. For a compact subset E of X,

V Φ(E) ≤ Φ(r0)−
An

H∞
h (E)

∫ r0

0
h(t)dΦ(t)

holds, where r0 = 2diamE and An is a con-

stant depending only on n.

Corollary 5 (Kametani) Under the same as-

sumptions, H∞
h (E) > 0 ⇒ CΦ(E) > 0.



Main Theorem 1.

Let h : (0, r0) → (0,+∞) be a gauge function.

We define the functions εj by the relations

h(ϕ(x/3)) =
exp ε1(x)

2
h(x)

and

h(2x) =
exp ε2(x)

2
h(x)

for sufficiently small x.

For a function λ : (0, x0) → R, we say that a

function ν : (0, x0) → R is a monotone majo-

rant of λ if ν is increasing and satisfies |λ(x)| ≤
ν(x) for 0 < x < x0.



Theorem 6 Let (X, ρ) be a complete metric

space. Suppose that ϕ satisfies ϕ(r) ≤ cr in

0 < r < r0 for some constant 0 < c < 1. If

there is a monotone majorant ω1 of ε1 such

that
∫ r0
0

ω1(r)dr
r < +∞, then

H∞
h (E) ≥

h(δ0)

2
exp

(
−ω1(δ0) −

1

log(6/c)

∫ δ0

0

ω1(x)dx

x

)

holds for any ϕ-perfect subset E of X, where

δ0 is an arbitrary number satisfying 0 < δ0 <

min{r0,diamE/2}. In particular, H∞
h (E) > 0. In

addition, if c < 1/4 and if there is a monotone

majorant ω2 of ε2 such that
∫ r0
0

ω2(r)dr
r < +∞,

then for each d0 ∈ (0, r0) there exists a ϕ-

perfect compact set E ⊂ [0, d0] such that

Hh(E) ≤
h(d0) exp

(
ω2(d0) +

1

log(1/2c)

∫ d0

0

ω2(x)dx

x

)
,

and thus 0 < H∞
h (E) ≤ Hh(E) < +∞.



Remark 1: When X is a Euclidean space, by

Theorem 4, we may deduce a lower estimate

of generalized capacities for ϕ-perfects sets.

Corollary 7 Let (X, ρ) be a complete metric

space. If ϕ(r) = cr, 0 < r < r0 for some con-

stants c ∈ (0,1] and r0 > 0, then any ϕ-perfect

set E satisfies H-dimE ≥ log 2/ log(6/c).

Remark 2: This fact was first shown by Järvi-

Vuorinen (1996) when X = Rn with a lower

bound depending on the dimension n.

Remark 3: We cannot apply the above theo-

rem to the case when ϕ(r) = ctβ for constants

c > 0 and β > 0 because the Dini-type condi-

tion is not satisfied.



Main Theorem 2.

Theorem 8 Let (X, ρ) be a complete metric

space. Suppose that ϕ satisfies ϕ(r) ≤ crα in

0 < r < r0 for some constants c > 0 and α > 1.

If there is a monotone majorant ω1 of ε1 such

that
∫ r0
0

ω1(r)dr
r log(2r0/r) < +∞, then

H∞
h (E) ≥

h(δ0)

2
exp

(
−ω1(δ0)−

1

logα

∫ δ0

0

ω1(x)dx

x log(M/x)

)

holds for any ϕ-perfect subset E of X, where

δ0 is an arbitrary number satisfying cδα−1
0 ≤ 1

and 0 < δ0 < min{r0,diamE} and

M =

(
2 · 3α

c

)1/(α−1)

(> δ0).

In particular, H∞
h (E) > 0.



Theorem 9 Under the same assumptions, if,

in addition, there is a monotone majorant ω2

of ε2 such that
∫ r0
0

ω2(r)dr
r log(2r0/r)

< +∞, then for

each d0 ∈ (0, r0) with cdα−1
0 < 1/4 there exists

a ϕ-perfect compact set E ⊂ [0, d0] such that

Hh(E) ≤
h(d0) exp

(
ω2(d0) +

1

logα

∫ d0

0

ω2(x)dx

x log(M/x)

)

and thus 0 < H∞
h (E) ≤ Hh(E) < +∞.



An application.

Set ϕ(r) = crα (0 < r < r0) for constants c >

0, α > 1, r0 > 0 with crα
0 ≤ r0. For this, we

take h(t) = (log(2r0/t))−γ, 0 < t < r0, where
γ = log2

logα. Then Theorems 8 and 9 are now
applicable. Thus, as a corollary, we obtain the
following.

Theorem 10 Let (X, ρ) be a complete metric
space. Under the above assumptions, every ϕ-
perfect compact set E ⊂ X satisfies H∞

h (E) >

0. Furthermore, there is a compact set E ⊂ R

such that 0 < H∞
h (E) ≤ Hh(E) < ∞.

By using Erdös-Gillis theorem, we have

Corollary 11 Under the same assumptions, ev-
ery ϕ-perfect set has positive logarithmic ca-
pacity whenever 1 < α < 2. On the other hand,
when α ≥ 2, there is a compact ϕ-perfect sub-

set E of R of logarithmic capacity zero.


