STRONG STARLIKENESS AND STRONG CONVEXITY
STANISLAWA KANAS AND TOSHIYUKI SUGAWA

ABSTRACT. By means of the Briot-Bouquet differential subordination, we investigate
geometric properties of strongly convex functions of a prescribed order and, more gener-
ally, functions in a prescribed class. We also make numerical experiments to examine our
estimates. The present note compliments the authors’ paper [5] by adding some results
obtained by experimental computations and details of the computations.

1. INTRODUCTION

We denote by 7 the class of functions f analytic in the unit disk D = {z € C: |2| < 1}
and normalized by f(0) = 0 and f’(0) = 1. Let . denote the class of normalized univalent
analytic functions and (k) denote the subclass of it consisting of those functions which
extend to k-quasiconformal mappings for 0 < k£ < 1. Let g and h be meromorphic functions
in D. We say that g is subordinate to h and express it by ¢ < h or g(2) < h(z) if g = how
for some analytic map w : D — D with w(0) = 0. When A is univalent, the condition
g < h is equivalent to g(D) C h(D) and g(0) = h(0).

It is well recognized that the quantities

2f'() 2f"(2)
f(2) ()

are important for investigation of geometric properties of an analytic function f on D.
The following formulae for a composite function f o g are useful:

(1.1) Prog=Prog-P, and Ry = (Rrfog—1)P,+ R,.

Pf(Z) = and Rf(Z) =1+

Note also that Py and Iy are related by

2P (2)
Pr(z)
where PJ? means the iteration Pp . For example, f € o/ is starlike (f is univalent and
f(D) is starlike with respect to the origin) if and only if Re Py > 0 and f € &/ is convex
(f is univalent and f(D) is convex) if and only if Re Ry > 0 (see [3]). For an analytic

function h in D with h(0) = 1, following Ma and Minda [6], we define the classes .#*(h)
and Z (h) by

S*(h)y={fed :Pr<h} and A (h)={fe€d:R;<h}.

(1.2) Ry(z) = P(2) +

= Py(2) + Pf(2),
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Throughout the paper, we will use the symbol 7' to stand for the mapping of the unit
disk onto the right-half plane which is defined by

1+2
1z
Note that * = *(T') and & = J£ (T) are the classical classes of (normalized) starlike
and convex functions, respectively. Let a be a positive real number. A function f in o/
is said to be strongly starlike of order « if f € #*(T), where the branch of T%(z) =
((1+2)/(1 — 2))* is chosen so that 7%(0) = 1. Many geometric characterizations of the
class *(T?), 0 < a < 1, are known (cf. [13]). Similarly, f in &7 is said to be strongly
convez of order « if f € #(T®). Note that .7*(T%) C .#*(T*) and ¥ (T*) C # (T*)
for 0 < oo < . For a constant 0 < k < 1, we set Ty(z) = T'(kz). Here are useful criteria
for quasiconformal extensions.

T(z)

Theorem A.
(i) S*(T*) C L(sin(ra/2)) for 0 < a < 1.
(i) S*(T,) C L (k) for 0 < kK < 1.

Relation (i) is due to Fait, Krzyz and Zygmunt [4], and (ii) is due to Brown [1] (see
also [12]). Note that .#*(T}) C /*(T) for a = (2/m) arcsin(2x/(1 + £2)).

Obviously, a convex function is starlike, in other words, # C .¥*. Therefore, it is
natural to consider the problem of finding the number

B*(a) = inf{B: #(T*) C (T}
for each o > 0, or, almost equivalently, finding the number

o (B) = sup{a : #(T*) Cc (T}
for each 3 > 0. Therefore, if # (T%) C .#*(T"), by definition, then 3*(a) < 8 and
a < a*(B). Tt is easy to observe that # (T®) C .#*(T% (@) and # (T*®) c #*(T?). In
particular,

o< (F (@) and §o(9) < B

Mocanu showed the relation 2 (T%) C .#*(T*) for 0 < a < 2 in [8] and improved it for
0 < a<1in [9] as follows. For 0 < 3 < 1, set

2 3 p
1.3 = —arctan |tan — 55 T3
(1.3) v(6) p t [t 2 + 1+ %0 -5 cos(ﬂﬁ/Q)]
B cos(m3/2)

EN]

(1+8)27(1— )" + Bsin(fr/2)

2
= 3+ — arctan
T

Theorem B (Mocanu). For 0 < 3 < 1, the relation ¢ (T7®) c #*(T?) holds.

This result was re-proved later in [10] and [11]. As immediate corollaries, we have
v(B) < a*(B) and B*(y(3)) < B for 0 < § < 1. It is claimed in [11] that y(5) = a*(3) for
0 < # < 1. That seems, however, to be wrong as we see in the sequel (cf. Example 3.1).

In the following, we consider the quantities

B [h] =inf{8>0: 2 (h) C 7*(T7)}
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and

kb =inf{x > 0: #(h) C S*(T.)}
for an analytic function h in D with A(0) = 1. For instance, f*[T%] = (*(«). We set
k*(a) = k*[T?]. Tt seems that no bounds of £*(«) was given in the literature. The purpose
of the present paper is to give a way of estimation of 3*(«) and £*(«). In particular, using
Theorem A, we obtain quasiconformal extension criteria for the class ¢ (T®), though we
do not state them separately.

2. KEY THEOREMS

Our arguments will be based on results proved by Miller and Mocanu. We state it in
convenient forms for the present aim. Let  be the complex plane with slits {yi : y > \/3}
and {yi: y < —/3}. It is known that  is the image of the unit disk under the univalent
function T'(2) + 2T"(2)/T'(%). Also let H denote the right half-plane {z : Rez > 0}. First
result is the following.

Theorem C (Miller and Mocanu [7, Theorem 3.2j]). Let h : D — Q be a holomorphic
map with h(0) =1 and let ¢ : D — H be a holomorphic map with q(0) = 1 satisfying the
equation

2¢'(2)
q(z) + ) h(z), ze€D.
Suppose that either h is convex or the function P,(z) = 2q'(2)/q(2) is starlike. Then q and
h must be univalent. Moreover, if an analytic function p in the unit disk with p(0) = 1
satisfies the condition

< h(2),
then p < q.
As an important corollary, we single out the following statement.

Corollary 2.1. Under the hypotheses in the above theorem, the inclusion relation # (h) C
S*(q) holds. In particular, the relations

B*[h] = sup|argq(z)| and k*[h] =sup
z€D z€D

q(z) — 1
q(z) +1
hold, where the branch of argq is taken so that argq(0) = 0.

Proof. Let f € J'(h). By (1.2), Py + 2P;/P;y = Ry < h. Thus, the theorem implies
P; < g, and therefore f € .#*(q). In particular, sup,.p, |arg Pr(z)| < sup,ep |argg(z)|.
Here, equality holds when we take f so that Ry = h. In the same way, the last relation is
shown. O

For the choice of ¢ = T#, we see that P,(z) = 202/(1 — 2?) is starlike, and therefore,
that ¢ (hg) C .*(T?), where

B
1+2 20z
) it

21) m(o) =)+ Pt = (12 + 1205



4 S. KANAS AND T. SUGAWA

Since infog, arg hg(e®?) = (), we obtain the relation 77®) < hg, and hence, ¢ (T7®) C
Z*(T?). In this way, Mocanu proved Theorem B in [9]. Note that x*[hg] = 1 for
0<pB<l1.

The function ¢ in Theorem C can be expressed in the following way. Let f € & be the
function satisfying Ry = h. Then

log f'(2) = / %da

Since ¢ = Py, we obtain

(2.2) $ _ /01 exp Vt %dc: dt.

We give expressions of the quantities f*(«) and £*(«) for 0 < o < 1. Let ¢, be the
solution of the initial value problem of the differential equation:

(2.3) q(2) + 24(2) T(2)°,

q(z)
q(0)
Note that gq is analytic in D\ {£1}. By the symmetry of the equation, the solution g, is

symmetric, namely, ¢,(2) = ¢o(Z). Since T* is convex and satisfies Re T* > 0, Corollary
2.1 implies the following.

1.

Proposition 2.2. For 0 < a < 1, the following relations hold:

B*(a) = sup argqe(e”) and K*(a) = sup
0<0<m 0<f<n

qa(eiﬂ) -1
Qo(€?) + 11|

It seems, however, to be difficult to obtain a mathematically reliable bound of 5*(«a/) or
k*(«) by solving the differential equation numerically, for the equation has a singularity
at the origin. Though ¢, can be presented explicitly by (2.2), it is still likely to be hard
to get a good bound of 3*(a) or k*(«). Even the inequality x*(«) < 1 is non-trivial (see
Theorem 3.5).

We now propose elementary bounds for these quantities. For a € (0,1),u € (0,1),v €
(0,400), ¢ € (0,1], we consider the function

(1+v)u(l+e2)*+ (1 —u)v(l —2)*
u(l+c2)*+v(l — 2)@ '

We write hq 0 for the function ¢ + P,, where ¢ = ¢ 0,
Then the key theorem is now stated as follows (see [5] for the proof).

qa,u,v,c(z) -

Theorem 2.3. The function ¢ = Qaup. s univalent in D and the image ¢(D) is a convex
subdomain of the right half-plane. Moreover, h = hg v 15 univalent, and if an analytic
function p in D with p(0) =1 satisfies p+ P, < h, then p < q.

As an immediate consequence, we obtain the following result.
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Theorem 2.4. The relation J# (hauwe) C 7 (Quuwp,e) holds for a,u € (0,1),v € (0,00)
and ¢ € (0,1].

We now set

2
ﬁ(aa u, v, C) = sup _| arg qa,u,v,c(z)|a

2eD T
—1
H(Oé, u, v, C) = sup M‘ and
2€D Qa,u,v,c(z) + 1
r — inf 2 h 10
(o, u, v, ) ot — arg ha up.c(e")

for a,u € (0,1),v € (0,00) and ¢ € (0, 1]. Here, the argument is taken to be the principal
value. As a corollary of the last theorem, we have

Corollary 2.5. Let f = f(a,u,v,¢),k = k(a,u,v,¢) and v = I'(a,u,v,¢) for a,u €
(0,1),v € (0,00) and ¢ € (0,1]. Then K# (T7) C *(TP)N.S*(T,). In particular, 3*(7) <
B and £*(7) < k.

We should note that I'(c, u, v, ¢) = 0 if hgype(—1) > 0. Therefore, we should choose ¢
so that hgyu.c(—1) <O0.

The following lemma was needed to prove Theorem 2.3 and it may be of independent
interest.

Lemma 2.6. Let o be a real number with 0 < a < 1 and let a,b,c,d be non-negative
numbers with ad — bc # 0. If ¢ = (aT* + b)/(cT* + d), the function zq'(z)/q(z) is starlike
and, in particular, univalent in D. Here, T%(2) = ((1 + 2)/(1 — 2))*.

We recall also the following simple fact (cf. [2]).

Lemma 2.7. Let f : D — C be a convexr univalent function and A be an open disk
contained in D. Then f(A) is also convex.

3. SUPPLEMENTARY COMPUTATIONS

We examine the estimate given in the previous section. Before investigating a concrete
example, we see some basic properties of the quantities defined in the previous section.

The function ¢4, can be written in the form L o 7%, where L is the Mdbius trans-
formation given by
14+ v)uz+ (1 —u)v

uz +v
which maps the right half-plane H onto the disk with diameter (1 — «,1 + v) in such a
way that L(0) =1 —wu, L(1) =1 and L(co) = 1 + v. The relation ¢u e < Gaup,1 holds
(cf. [5]).

We denote by Q(a,u,v) the image of D under the mapping ¢ 4,1 This is the Jordan
domain symmetric with respect to the real axis, bounded by the union of two circular
arcs I' and T’ with common endpoints at 1 — v and 1 + v which form the angle 7o at
the endpoints. In particular, gau.,1 is a convex function. Note that Q(a, u,v) C H for
a,u € (0,1),v € (0,00).

We recall that ¢auwpe < Gaup,1 and thus (o, u,v,a) < (o, u,v,1) for 0 < ¢ < 1.
We now compute the value of = fB(«,u,v,1). Let I' denote the upper circular arc of
0Q(a, u,v) and let £ be the tangent line ¢ of I" which passes through the origin. Further

L(z) = (

)
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let @ and R be the center and the radius of the circle containing I'. Since 2Rea = (1 —u)+
(14 v) and arg(a — (1 —u)) = (1 — a)7/2, we can write a = 1 + (v — u)/2 — R cos(ma/2)
and obtain Rsin(ra/2) = (1 +v) — (1 — u))/2 = (u + v)/2. As is well known, letting
m = tan(7(3/2), distance of a to £ can be given by |Rea — mImal|/v/1 + m?, which must
be equal to K. Thus we have the relation

2—u+wv o\’ 2\ 192
T—l—chos? = (1+m*)R".

By solving this quadratic equation in m, we obtain

1 2—u+vw TQ 2 —u+uv\’ 1
— = ———cot — + ) -1 —
m u+v 2 u+v sin(mwa/2)

_ (2—u+w)cos(ra/2) + 2¢/(1 —u)(1+v)
(u+v)sin(ra/2) '

Hence,

T (u+ v)sin(ra/2)

Ao, u,v,1) = 2 ot ! [(2 —utwv)cos(ma/2) +2y/(1 —u)(1 +v)

One can see that the quantity § = 3(«,u,v,1) depends only on @ and M = (2 —u +
v)/(u + v) and that 3 decreases in M. Note that 5 — o when M — 1 and f — 0
when M — oo. In particular, 0 < (o, u,v,1) < a. Since ¢aup.e < Gaup,1, We obtain the
following.

Lemma 3.1. For a,u € (0,1), v € (0,00), ¢ € (0,1], the inequality

(2 — u+wv)cos(ma/2) + 2¢/(1 — u)(1 +v)
(u + v) sin(ra/2)

2
B(a,u,v,¢) < =cot !
T

holds, where equality is valid whenever ¢ = 1.

Though it is hard to give an explicit expression of 5(«, u, v, ¢) except for the case ¢ = 1,
the quantity k(«,u,v,c) can easily be computed.

Lemma 3.2. For a,u € (0,1),v € (0,00),c € (0,1], the quantity k(c,u,v,c) is given by

uv(l — b%) v }

w24+ 0)b*+ (2 —u)v’ 24w

k(, u, v, c) = max {
where b= (1 —¢)/2.

Proof. Let ¢ = qaup.c and set h = (¢ —1)/(¢+ 1). Our goal is to show that h(D) C D, =
{z :|z] < K}.

By Lemma 2.7, the image of D under the function f = T%ow is convex, where w : D — D
is given by
(402 az
C2—(1—-c)z 1-—b2
where a = (14 ¢)/2 and b = (1 — ¢)/2. Note that f(—1) = b*. Since f is symmetric with
respect to the real axis, f(D) is contained in the half-plane H = {z : Re z > 0*}. Recalling
that h = M o f, where M is the Mdbius transformation uv(z —1)/((2 +v)uz + (2 — u)v),

(3.1) w(z) = we(2)
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we find that h(D) is contained in the disk M (H). The disk M(H) has (h(—1),h(1)) as a
diameter and therefore contained in the disk |w| < max{—h(—1), h(1)} = k. The proof
is completed. O

Let us give a rough lower estimate for the quantity v = ['(«,u,v,1). (Though we
can give a similar, but more complicated, estimate of I'(a, u, v, ¢) for ¢ € (0,1], we are
content with the present case.) Recall that + is defined to be the infimum of arg h(e?’) =
arg(q(e”) + Q(e®)) over the range 0 < 6 < 7, where ¢ = gauv1, @ =Py, h=q+ Q.

It is easy to see that |Q(e”)| — oo and arg Q(e?) — (7/2)(1 — a) as # — +0, and that
|Q(e?)] — oo and arg Q(e?) — (7/2)(1 + ) as § — 7 — 0. Since @ is starlike (Lemma
2.6) and analytic in D \ {1, -1}, arg Q(e") is increasing and thus,

Z(1+a)

(3.2) g(l —a) <argQ(e”) < 3

for 0 < @ < 7. On the other hand, g(e?) is bounded. Therefore, arg h(e??) — (7/2)(1— )
as 0 — +0. In particular,
Fo,u,v,¢) <1 -«
when ¢ = 1. It is not difficult to see that the same is true for ¢ € (0, 1]. This estimate
shows a limitation of Theorem 2.3 in applications.
For a lower estimate, we set

®(0) = argq(e?) and W(0) = arg Q(e™)
for0 <0 <.

Lemma 3.3. Let 0y be the number in (0,7) satisfying Re Q(e?®) = 0. Then ®'(f) > 0
for 0 < 0 < 6y and ®'(0) < 0 for 6y < 0 < w. Furthermore, |®'(8)| < U'(0) holds for
0<0<m.

Proof. Recall that @ is starlike and analytic in D\ {1, —1} and therefore 6 is uniquely
determined. We also note that

P'(0) = jg (Imlog ¢(€’ )) = Re Q(e")

for 0 < 0 < 7. Therefore, the first assertion is clear. Similarly, we have ¥'() = Re Py(e').
Therefore, in order to show the second assertion, we need to see
—Re Py(e”) < ReQ(e™) < Re Py(e)

for 0 < # < w. Since R, = ) + Py by (1.2), the left-hand side inequality follows from
convexity of ¢q. We show the right-hand side. For convenience, set a = (1 + v)u,b =
(1 —u)v,c=wu and d = v for a while. (We should forget about the previous parameter ¢
since we are now assuming that ¢ = 1.) We also set p = T®. Then,

_2p'(2) (ad — be)p(z) _ 20z (ad — be)p(z)
B QO W h@E) T d) 12 () 1 D) T d)

and
142 () ew(z) el (3)
Py(z) = 1 _ .2 T p(z)  ap(z)+b  cp(z) +d
1422 202 bd — acp(z)?
(3.4) 12T T2 e 1)@k +d)
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Thus, we compute

1+ 22 20z b —ap(z)
Polz) = Q(2) = 1— 22 + 1—22 b+ ap(z)’

where p(z) = ((1 + 2)/(1 — z))*. Therefore,

- - b — ap(e”)

Re P 0y R 0 - _ a . e S

e Po(e”) e Qe") sin @ o b+ ap(e?)
_ i0

_ o ~ab Imp(-e ) >0
sinf |b+ ap(e?)|?
for0 <0 <. O
As we saw above, ¥(0+) = 7(1 — a)/2. Therefore,
(1 —«)

W(0) ~ B(0) > W(0+) — B(0+) =

for 0 < 6 < 7. Set p() = |q(e?)] and R(A) = |Q(e?)]. We now use the following
elementary inequality:
arg(q(e”?) + Q(e")) = @(0) + arg(p(6) + R(9)e" =)
sin(¥(0) — @(9)))
1+ p(0)/R(9)
sin(7(1 — a)/2)>
1+ p(0)/R(0)

for 0 < @ < m. Thus we have proved the following lemma.

= ®(f) + arcsin <

> ®(f) + arcsin (

Lemma 3.4.

arg h(e) > ®(f) + arcsin (Sm(”(l _ a)/2)> .

1+ p(0)/R(0)
If we set t = cot(6/2), we obtain the representation
(e = g(e) + Q(e”)
(14 v)udt* + (1 —u)v N auv(u+v)(t+ 1/t)t*Ci
ult® + v 2((1 4+ v)uct® + (1 — u)v) (ult® +v)’
where ¢ = e™/2_ Therefore,
p(0)  2|(1+v)ult+ (1 —u)v|?
R(O)  auv(u+o)(t+1/t)te
2((1 4 v)?u®t® + 2(1 — u) (1 + v)uv cos(ra/2) + (1 — u)?v?t™%)
auv(u+v)(t+1/t)

(3.5) -

< 2(u +v)

: a—1 41—«
- mln{t , T }

Though we could obtain an explicit (but complicated) bound for x*(vy) for small enough
v, we just state the result in the following qualitative form.

Theorem 3.5. Let vy ~ 0.576567 be the solution of the equation v(1 —z) =z in 0 <
x < 1, where v(B) is the function given in (1.3). Then k*(y) < 1 for v € (0,70).
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Proof. Set o =1 — 7. Then y(a) = . Fix a number v € (0,7) and choose a 7 > 1 so
large that

Ty _ sin(my/2)
(3.6) 5 < arcsin (1 n 8Ta1/a> :
Let 6, and #y be the angles determined by cot(6,/2) = 7 and cot(#y/2) = 1/7 and
0<6 <6y <m.

It is easy to see that hg,, 1 converges to h, locally uniformly on D\ {1, —1} as u — 1
and v — +o00, where hq ., is the function defined in §3 and h, is given by (2.1). We
now recall the fact that info g, arg ho(e?) = v(a) = 7 (cf. [9]). Therefore, we can take
u € (1/2,1) and v € (1,00) so that arg hg...1(e?) > 7 for 6 € [0;,0]. At the same time,
by Lemma 3.4, (3.5) and (3.6), we have

arg ha,u,v,l(ew) > arcsin (

sin(70/2) )

1+ 2(u 4+ v)r*/(quwv)

> arcsin ( 2T0/2).
1+ 81/«

Ty
>_
2

for 6 € (0,60;) U (6, 7). In this way, we conclude that I'(a, u,v,1) > « for this choice of
(v, u,v).
On the other hand, by Lemma 3.2, we have

u v
1) = mi — —— < 1.
k(o u,v,1) m1n{2_u, 2—1—1}}
Therefore, we obtain # (T7) C J# (hauw,1) C < (dauw1) C 7 (Teaupw,1)), from which
we deduce k*(7) < k(a,u,v,1) < 1. O

In the last theorem, the assumption v < v, was put for merely a technical reason. It is
true that x*() < 1 for every v € (0, 1). See [5] for a rigorous proof of it.

Example 3.1. We try to estimate $*(1/2) with the aid of Mathematica. By numerical
experiments, we found that the choice a = 0.4731,u = 0.9285,v = 4.2506,c¢ = 0.9285
yields I'(«, u,v,¢) ~ 1/2 and f(a,u,v,c) & 0.32104. Therefore, we obtain numerically,
B*(1/2) < 0.3211.

Mocanu’s theorem, in turn, gives the estimate 3*(1/2) < v7!(1/2) =~ 0.35046. On the
other hand, by numerically solving the differential equation (2.3), we obtain an experi-
mental value 3*(1/2) = 0.309, though we do not know how reliable it is.

We next try to estimate £*(1/2). For « = 1/2,u = 0.95,v = 3.47,¢ = 0.49, we obtain
(e, u,v,¢) = 1/2 and k(a,u,v,c) ~ 0.634. Therefore, k*(1/2) < 0.635. By a numerical
computation, we have an experimental value £*(1/2) ~ 0.613.
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