THE CIRCULAR WIDTH OF A PLANE DOMAIN AND ITS APPLICATIONS

TOSHIYUKI SUGAWA

Abstract. We first give a quantity for non-vanishing analytic functions on a hyperbolic domain to measure their rate of growth in terms of hyperbolic metric. Then we define the circular width of a plane domain not containing the origin. We will see that an estimate of the circular width leads to a criterion for univalence (or quasiconformal extension).

1. The quantity $V_D(\varphi)$

Conformal invariants play a central role in the modern theory of functions of a complex variable. One of the most important is the hyperbolic metric $\rho_D(z)|dz|$ of a hyperbolic plane domain D. Recall that a subdomain D of \mathbb{C} is called hyperbolic if D admits an analytic universal covering projection p of the unit disk $D = \{ \zeta \in \mathbb{C} : |\zeta| < 1 \}$ onto D. Then the hyperbolic metric is defined by the equation $\rho_D(z)|p'(\zeta)| = 1/(1-|\zeta|^2)$ for $\zeta \in p^{-1}(z)$. Note that the density $\rho_D(z)$ does not depend on the particular choice of ζ or p. The Poincaré-Koebe uniformization theorem tells us that $D \subset \mathbb{C}$ is hyperbolic if and only if D is neither the whole plane \mathbb{C} nor the punctured plane $\mathbb{C} \setminus \{a\}$ for any $a \in \mathbb{C}$. We denote by $d_D(z_0, z_1)$ the distance between z_0 and z_1 measured by the metric $\rho_D(z)|dz|$.

Let φ be a non-vanishing analytic function on a hyperbolic domain D, namely, $\varphi : D \to \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is holomorphic. Then we set

$$V_D(\varphi) = \sup_{z \in D} \rho_D(z)^{-1} \left| \frac{\varphi'(z)}{\varphi(z)} \right|.$$

Note also that $V_D(\varphi)$ can be thought of the Bloch semi-norm of the (possibly multi-valued) function $\log \varphi$. The quantity $V_D(\varphi)$ measures the rate of growth of φ compared with the hyperbolic metric. More precisely, we have the following characterization.

Proposition 1. Let φ be a non-vanishing analytic function on a hyperbolic domain D and let c be a positive constant. Then $V_D(\varphi) \leq c$ if and only if the double inequality

$$\exp \left(-c d_D(z_0, z_1) \right) \leq \frac{|\varphi(z_1)|}{|\varphi(z_0)|} \leq \exp \left(c d_D(z_0, z_1) \right)$$

holds for every pair of points z_0, z_1 in D.

We list properties of this quantity.

Theorem 2. Let D be a hyperbolic domain and let φ and ψ be non-vanishing analytic functions on D.

(i) $V_D(\varphi \cdot \psi) \leq V_D(\varphi) + V_D(\psi)$.

(ii) $V_D(\varphi^n) = |\alpha|V_D(\varphi)$ holds for a complex number α whenever φ^n is single-valued in D.

(iii) Let $p : D_0 \to D$ be an analytic (unbranched and unlimited) covering projection. Then $V_{D_0}(\varphi \circ p) = V_D(\varphi)$. In particular, $V_D(\varphi)$ is conformally invariant in the sense that this does not depend on the source domain.

(iv) $V_D(L \circ \varphi) = V_D(\varphi)$ holds for any conformal automorphism L of \mathbb{C}^*. In particular, $V_D(1/\varphi) = V_D(\varphi) = V_D(c\varphi)$ for any constant $c \in \mathbb{C}^*$.

Date: November 11, 2004, at Satellite Plaza of Kanazawa University.

This talk is based on the joint work [8] with Yong Chan Kim.
(v) Let \(\omega : D_0 \to D \) be a holomorphic map. Then \(V_{D_0}(\varphi \circ \omega) \leq V_D(\varphi) \).

(vi) If \(\psi : D \to \mathbb{C}^* \) is univalent and if \(\varphi(D) \subset \psi(D) \) then \(V_D(\varphi) \leq V_D(\psi) \).

2. Circular width

Let \(\Omega \) be a hyperbolic plane domain with \(0 \in \mathbb{C} \setminus \Omega \). The quantity

\[
W(\Omega) = \left(\inf_{w \in \Omega} |w| \rho_\Omega(w) \right)^{-1}
\]

will be called the circular width of \(\Omega \) (about the origin). This quantity can be expressed in terms of a covering projection onto \(\Omega \).

Lemma 3. Let \(\Omega \) be a proper subdomain of the punctured plane \(\mathbb{C}^* \) and let \(p \) be an analytic (unbranched) covering projection of a domain \(D \) onto \(\Omega \). Then \(W(\Omega) = V_D(p) \).

Remark. In general, we can define the circular width \(W_\alpha(\Omega) \) about a point \(\alpha \in \mathbb{C} \setminus \Omega \) in the same way: \(W_\alpha(\Omega) = 1/\inf_{w \in \Omega} |w - \alpha| \rho_\Omega(w) \). It is known that the domain constant \(C(\Omega) = \sup_{\alpha \in \mathbb{C} \setminus \Omega} W_\alpha(\Omega) \) is finite if and only if the set \(\mathbb{C} \setminus \Omega \) is uniformly perfect (see, for example, \([10]\) or \([12]\)). In this context, the constant \(W_\alpha(\Omega) \) appeared essentially in a paper \([13]\) by J.-H. Zheng.

We now collect basic properties of the circular width. Before that, we recall the notion of circular symmetrization. For a subdomain \(\Omega \) of \(\mathbb{C}^* \) we define the circular symmetrization \(\Omega^* \) (about the origin) by

\[
\Omega^* = \{ re^{i\theta} : \theta \in I(r, \Omega), 0 < r < \infty \},
\]

where \(I(r, \Omega) \) denotes the interval in the form \((- t/2, t/2)\) of the same length as \(I_r = \{ \theta \in [- \pi, \pi] : re^{i\theta} \in \Omega \} \) if \(I_r \neq [- \pi, \pi] \) otherwise \(I(r, \Omega) = [- \pi, \pi] \).

Theorem 4. Let \(\Omega \) and \(\Omega' \) be proper subdomains of the punctured plane \(\mathbb{C}^* \).

(i) \(W(\Omega) = W(L(\Omega)) \) for any conformal automorphism \(L \) of \(\mathbb{C}^* \).

(ii) If \(\Omega \subset \Omega' \), then \(W(\Omega) \leq W(\Omega') \).

(iii) Circular symmetrization does not decrease circular width: \(W(\Omega) \leq W(\Omega^*) \).

(iv) If \(\Omega \) is simply connected, then \(W(\Omega) \leq 4 \).

In general, the circular width may not be finite. We give here a characterization of domains with infinite circular width. In particular, if the origin is an isolated boundary point of \(\Omega \), then \(W(\Omega) = \infty \).

Proposition 5. Let \(\Omega \) be a proper subdomain of the punctured plane \(\mathbb{C}^* \). The circular width \(W(\Omega) \) is infinite if and only if there is a sequence of annuli \(A_n = \{ w \in \mathbb{C} : r_n < |w| < R_n \} \) with \(A_n \subset \Omega \) such that \(R_n/r_n \to \infty \).

The circular width may not behave continuously in \(\Omega \). For instance, consider the sequence of domains \(\Omega_n = \{ |w - 1| < 1 + 1/n \} \). Then \(\Omega_n \) converges to \(\Omega_\infty = \{ |w - 1| < 1 \} \) in the Hausdorff topology. But \(W(\Omega_n) = \infty \) by Proposition 5 whereas \(W(\Omega_\infty) \leq W(\mathbb{H}) = 2 \) (see Example 3.1). We can, however, show a continuity property of circular width in the following form.

Proposition 6. Let \(\Omega_n \) be a sequence of domains with \(\Omega_n \subset \Omega_{n+1} \) such that the union \(\Omega = \bigcup_{n=1}^\infty \Omega_n \) is a proper subdomain of \(\mathbb{C}^* \). Then \(W(\Omega_n) \to W(\Omega) \) as \(n \to \infty \).

The circular width \(W(\Omega) \) dominates the quantity \(V_D(\varphi) \) for holomorphic maps \(\varphi : D \to \Omega \).

Theorem 7. Let \(\varphi : D \to \Omega \) be holomorphic. Then \(V_D(\varphi) \leq W(\Omega) \).

Proof. By Theorem 2 (v), we have \(V_D(\varphi) = V_D(id_D \circ \varphi) \leq V_D(id_D) = W(\Omega) \).

Combining this with Proposition 1, we have the following. A similar result was obtained by \([13]\).

Corollary 8. Under the same hypotheses in Theorem 7,

\[
\exp \left(- W(\Omega) d_D(z_0, z_1) \right) \leq \frac{|\varphi(z_1)|}{|\varphi(z_0)|} \leq \exp \left(W(\Omega) d_D(z_0, z_1) \right), \quad z_0, z_1 \in D.
\]
3. Computations of circular widths

In the present section, we give exact values of circular width for several concrete examples. In view of Theorem 4 (iii), we see that circularly symmetric domains are particularly important.

Example 3.1 (sectors). For $S(\beta) = \{w : |\arg w| < \pi \beta / 2\}$, $0 < \beta \leq 2$, we have $W(S(\beta)) = 2\beta$.

Example 3.2 (half-sectors). Let $S(\beta, r) = \{w : |\arg w| < \pi \beta / 2, |w| < r\}$ and $S'(\beta, r) = \{w : |\arg w| < \pi \beta / 2, |w| > 1/r\}$ for $0 < \beta \leq 2$ and $0 < r < \infty$. Then $W(S(\beta, r)) = W(S'(\beta, r)) = 2\beta$.

Example 3.3 (annuli). For the annulus $A(r, R) = \{w : r < |w| < R\}, 0 < r < R < \infty$, we have $W(A(r, R)) = (2/\pi) \log(R/r)$.

Example 3.4 (disks). Let $D(a, r) = \{w : |w - a| < r\}$ for $0 < r \leq a$. Then

$$W(D(a, r)) = \frac{2r/a}{1 + \sqrt{1 - (r/a)^2}}.$$

Example 3.5 (parallel strips). Let $P(a, b) = \{w : a < \Re w < b\}$ for $0 \leq a < b < \infty$. Then

$$W(P(a, b)) = \max_{0 \leq \theta \leq \pi/2} \frac{2t \cos \theta}{1 - t^2},$$

where t is a number with $0 < t \leq 2/\pi$ determined by $\pi t/2 = (b - a)/(b + a)$.

Example 3.6 (truncated wedges). Let $S(\beta, r, R) = \{w : |\arg w| < \pi \beta / 2, r < |w| < R\}, 0 < \beta \leq 2, 0 < r < R < \infty$. Then

$$W(\Omega) = \frac{\log(R/r)}{(1 + t)K(t)},$$

where

$$K(t) = \int_0^1 \frac{dx}{\sqrt{(1 - x^2)(1 - t^2 x^2)}}$$

is the complete elliptic integral of the first kind and $0 < t < 1$ is a number such that

$$\frac{K(\sqrt{1 - t^2})}{K(t)} = \frac{2\pi \beta}{\log(R/r)}.$$

Note that the quantity $\mu(t) = (\pi/2)K(\sqrt{1 - t^2})/K(t)$ is the modulus of the Grötzsch ring $\mathbb{D} \setminus [0, t]$ for $0 < t < 1$ and decreasing from $+\infty$ to 0 (see, for example, [1]). Therefore, we can always take such a t satisfying the above relation.

We remark that the essentially same observations for the last example were made by Avhadiev and Aksent’ev [2] though they did not make systematic use of circular width.

4. Applications

In this section, we give a few applications of circular width. More concrete applications can be found in [9] and [11].

Let us introduce some notation. For a locally univalent function f on \mathbb{D}, the quantity $T_f = f''/f'$ is called the pre-Schwarzian derivative of f and measured by the norm

$$\|T_f\|_0 = \sup_{z \in \mathbb{D}} |1 - |z|^2| |T_f(z)|.$$

Note that this can be described by $\|T_f\|_0 = V_2(f')$. Let \mathcal{A} denote the class of holomorphic functions f on \mathbb{D} normalized by $f(0) = 0, f'(0) = 1$.

Theorem 9. Let Ω be a proper subdomain of the punctured plane \mathbb{C}^* with $W(\Omega) < 2$. If $f \in \mathcal{A}$ satisfies $f'(\mathbb{D}) \subset \Omega$, then $|f(z)| < M, z \in \Omega$. Here M is a constant depending only on $W(\Omega)$.

The constant M can be given by

$$M = \lambda \left[\psi \left(\frac{1}{2} \right) - \psi \left(\frac{1}{M} \right) \right] - 1,$$

where $\lambda = W(\Omega)/2$ and $\psi(x) = \Gamma'(x)/\Gamma(x)$ is the digamma function (see [7]).

It may be interesting to find a characterization of such subdomains Ω of \mathbb{D} that $f'(\mathbb{D}) \subset \Omega$ implies boundedness of $f \in \mathcal{A}$. Note that the condition $f'(\mathbb{D}) \subset \mathbb{H}$ implies univalence of f (Noshiro-Warschawski
theorem). Recently, Chuaqui and Gevzirtz [6] gave a characterization of such subdomains Ω of \mathbb{H} that $f'(D) \subset \Omega$ implies quasiconformal extensibility of $f \in A$.

We next apply Theorem 7 to the problem of quasiconformal extensibility. Our result is based the following theorem due to J. Becker. See, for sharpness, Becker and Pommerenke [5].

Theorem 10 (Becker [4]). Let $f \in A$ be locally univalent. If $\|T_f\|_D \leq 1$, then f is univalent. Furthermore, if $\|T_f\|_D \leq k$ for $k \in [0, 1)$, then f has a K-quasiconformal extension to the whole plane, where $K = (1 + k)/(1 - k)$.

Making use of this result, we can show the following.

Theorem 11. Suppose that a proper subdomain Ω of the punctured plane \mathbb{C}^* satisfies $W(\Omega) \leq k$ for some $k \leq 1$. If $f'(D) \subset \Omega$ for $f \in A$, then f is univalent and, moreover, f has a K-quasiconformal extension to the whole plane when $K = (1 + k)/(1 - k) < \infty$.

Proof. As we noted, the condition $f'(D) \subset \Omega$ implies that $\|T_f\|_D \leq W(\Omega) \leq k$. We now apply Theorem 10 to deduce the assertions. \square

Combining this with examples presented in the previous section, we obtain a series of corollaries. (Remember the fact that circular width is invariant under rotations.) The first corollary was noted by Avhadiev and Aksent’ev [3, pp. 33–34] at least when $\gamma = 0$.

Corollary 12. Let $0 < k \leq 1$ and $f \in A$. If $|\arg f'(z) - \gamma| < \pi k/4$ in $|z| < 1$ for some real constant γ, then f is univalent and, moreover, it extends to a K-quasiconformal mapping of the whole plane when $K = (1 + k)/(1 - k) < \infty$.

Note also that the condition $|\arg f'(z)| < M$, $|z| < 1$, implies quasiconformal extensibility of f when $M < \pi/2$ (see [6]).

Corollary 13. Let k, r, R be positive numbers with $0 < \log(R/r) \leq \pi k/2$ and $f \in A$. If $r < |f'(z)| < M$ in $|z| < 1$, then f is univalent and, moreover, it extends to a K-quasiconformal mapping of the whole plane when $K = (1 + k)/(1 - k) < \infty$.

We omit the other examples.

REFERENCES

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, HIGASHI-HIROSHIMA, 739-8526 JAPAN

E-mail address: sugawa@math.sci.hiroshima-u.ac.jp