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Abstract. We first give a quantity for non-vanishing analytic functions on a hyperbolic domain to

measure their rate of growth in terms of hyperbolic metric. Then we define the circular width of a plane

domain not containing the origin. We will see that an estimate of the circular width leads to a criterion
for univalence (or quasiconformal extension).

1. The quantity VD(ϕ)

Conformal invariants play a central role in the modern theory of functions of a complex variable.
One of the most important is the hyperbolic metric ρD(z)|dz| of a hyperbolic plane domain D. Recall
that a subdomain D of C is called hyperbolic if D admits an analytic universal covering projection p
of the unit disk D = {ζ ∈ C : |ζ| < 1} onto D. Then the hyperbolic metric is defined by the equation
ρD(z)|p′(ζ)| = 1/(1−|ζ|2) for ζ ∈ p−1(z). Note that the density ρD(z) does not depend on the particular
choice of ζ or p. The Poincaré-Koebe uniformization theorem tells us that D ⊂ C is hyperbolic if and
only if D is neither the whole plane C nor the punctured plane C \ {a} for any a ∈ C. We denote by
dD(z0, z1) the distance between z0 and z1 measured by the metric ρD(z)|dz|.

Let ϕ be a non-vanishing analytic function on a hyperbolic domain D, namely, ϕ : D → C∗ = C \ {0}
is holomorphic. Then we set

VD(ϕ) = sup
z∈D

ρD(z)−1

∣∣∣∣ϕ′(z)
ϕ(z)

∣∣∣∣ .
Note also that VD(ϕ) can be thought of the Bloch semi-norm of the (possibly multi-valued) function
logϕ. The quantity VD(ϕ) measures the rate of growth of ϕ compared with the hyperbolic metric. More
precisely, we have the following characterization.

Proposition 1. Let ϕ be a non-vanishing analytic function on a hyperbolic domain D and let c be a
positive constant. Then VD(ϕ) ≤ c if and only if the double inequality

exp
( − c dD(z0, z1)

) ≤ |ϕ(z1)|
|ϕ(z0)| ≤ exp

(
c dD(z0, z1)

)
(1.1)

holds for every pair of points z0, z1 in D.

We list properties of this quantity.

Theorem 2. Let D be a hyperbolic domain and let ϕ and ψ be non-vanishing analytic functions on D.

(i) VD(ϕ · ψ) ≤ VD(ϕ) + VD(ψ).
(ii) VD(ϕα) = |α|VD(ϕ) holds for a complex number α whenever ϕα is single-valued in D.
(iii) Let p : D0 → D be an analytic (unbranched and unlimited) covering projection. Then VD0(ϕ ◦ p) =

VD(ϕ). In particular, VD(ϕ) is conformally invariant in the sense that this does not depend on the
source domain.

(iv) VD(L ◦ ϕ) = VD(ϕ) holds for any conformal automorphism L of C∗. In particular, VD(1/ϕ) =
VD(ϕ) = VD(cϕ) for any constant c ∈ C∗.
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(v) Let ω : D0 → D be a holomorphic map. Then VD0(ϕ ◦ ω) ≤ VD(ϕ).
(vi) If ψ : D → C∗ is univalent and if ϕ(D) ⊂ ψ(D) then VD(ϕ) ≤ VD(ψ).

2. Circular width

Let Ω be a hyperbolic plane domain with 0 ∈ C \ Ω. The quantity

W (Ω) =
(

inf
w∈Ω

|w|ρΩ(w)
)−1

will be called the circular width of Ω (about the origin). This quantity can be expressed in terms of a
covering projection onto Ω.

Lemma 3. Let Ω be a proper subdomain of the punctured plane C∗ and let p be an analytic (unbranched)
covering projection of a domain D onto Ω. Then W (Ω) = VD(p).

Remark. In general, we can define the circular width Wa(Ω) about a point a ∈ C \ Ω in the same
way: Wa(Ω) = 1/ infw∈Ω |w− a|ρΩ(w). It is known that the domain constant C(Ω) = supa∈C\ΩWa(Ω) is
finite if and only if the set Ĉ \Ω is uniformly perfect (see, for example, [10] or [12]). In this context, the
constant Wa(Ω) appeared essentially in a paper [13] by J.-H. Zheng.

We now collect basic properties of the circular width. Before that, we recall the notion of circular
symmetrization. For a subdomain Ω of C∗ we define the circular symmetrization Ω∗ (about the origin)
by

Ω∗ = {reiθ : θ ∈ I(r,Ω), 0 < r <∞},
where I(r,Ω) denotes the interval in the form (−t/2, t/2) of the same length as Ir = {θ ∈ [−π, π] : reiθ ∈
Ω} if Ir 6= [−π, π] otherwise I(r,Ω) = [−π, π].

Theorem 4. Let Ω and Ω′ be proper subdomains of the punctured plane C∗.
(i) W (Ω) = W (L(Ω)) for any conformal automorphism L of C∗.
(ii) If Ω ⊂ Ω′, then W (Ω) ≤W (Ω′).
(iii) Circular symmetrization does not decrease circular width; W (Ω) ≤W (Ω∗).
(iv) If Ω is simply connected, then W (Ω) ≤ 4.

In general, the circular width may not be finite. We give here a characterization of domains with
infinite circular width. In particular, if the origin is an isolated boundary point of Ω, then W (Ω) = ∞.

Proposition 5. Let Ω be a proper subdomain of the punctured plane C
∗. The circular width W (Ω) is

infinite if and only if there is a sequence of annuli An = {w ∈ C : rn < |w| < Rn} with An ⊂ Ω such that
Rn/rn → ∞.

The circular width may not behave continuously in Ω. For instance, consider the sequence of domains
Ωn = {|w − 1| < 1 + 1/n}. Then Ωn converges to Ω∞ = {|w − 1| < 1} in the Hausdorff topology. But
W (Ωn) = ∞ by Proposition 5 whereas W (Ω∞) ≤W (H) = 2 (see Example 3.1). We can, however, show
a continuity property of circular width in the following form.

Proposition 6. Let Ωn be a sequence of domains with Ωn ⊂ Ωn+1 such that the union Ω = ∪∞
n=1Ωn is

a proper subdomain of C∗. Then W (Ωn) →W (Ω) as n → ∞.

The circular width W (Ω) dominates the quantity VD(ϕ) for holomorphic maps ϕ : D → Ω.

Theorem 7. Let ϕ : D → Ω be holomorphic. Then VD(ϕ) ≤W (Ω).

Proof. By Theorem 2 (v), we have VD(ϕ) = VD(idΩ ◦ ϕ) ≤ VΩ(idΩ) = W (Ω).

Combining this with Proposition 1, we have the following. A similar result was obtained by [13].

Corollary 8. Under the same hypotheses in Theorem 7,

exp
( −W (Ω) dD(z0, z1)

) ≤ |ϕ(z1)|
|ϕ(z0)| ≤ exp

(
W (Ω) dD(z0, z1)

)
, z0, z1 ∈ D.
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3. Computations of circular widths

In the present section, we give exact values of circular width for several concrete examples. In view of
Theorem 4 (iii), we see that circularly symmetric domains are particularly important.

Example 3.1 (sectors). For S(β) = {w : |argw| < πβ/2}, 0 < β ≤ 2, we have W (S(β)) = 2β.

Example 3.2 (half-sectors). Let S(β, r) = {w : |argw| < πβ/2, |w| < r} and S′(β, r) = {w : |argw| <
πβ/2, |w| > 1/r} for 0 < β ≤ 2 and 0 < r <∞. Then W (S(β, r)) = W (S′(β, r)) = 2β.

Example 3.3 (annuli). For the annulus A(r, R) = {w : r < |w| < R}, 0 < r < R < ∞, we have
W (A(r, R)) = (2/π) log(R/r).

Example 3.4 (disks). Let D(a, r) = {w : |w − a| < r} for 0 < r ≤ a. Then

W (D(a, r)) =
2r/a

1 +
√

1 − (r/a)2
.

Example 3.5 (parallel strips). Let P (a, b) = {w : a < Rew < b} for 0 ≤ a < b <∞. Then

W (P (a, b)) = max
0≤θ≤π/2

2t cos θ
1 − tθ

,

where t is a number with 0 < t ≤ 2/π determined by πt/2 = (b − a)/(b+ a).

Example 3.6 (truncated wedges). Let S(β, r, R) = {w : |argw| < πβ/2, r < |w| < R}, 0 < β ≤ 2, 0 <
r < R <∞. Then

W (Ω) =
log(R/r)

(1 + t)K(t)
, where K(t) =

∫ 1

0

dx√
(1 − x2)(1 − t2x2)

is the complete elliptic integral of the first kind and 0 < t < 1 is a number such that

K(
√

1 − t2)
K(t)

=
2πβ

log(R/r)
.

Note that the quantity µ(t) = (π/2)K(
√

1 − t2)/K(t) is the modulus of the Grötzsch ring D \ [0, t] for
0 < t < 1 and decreasing from +∞ to 0 (see, for example, [1]). Therefore, we can always take such a t
satisfying the above relation.

We remark that the essentially same observations for the last example were made by Avhadiev and
Aksent’ev [2] though they did not make systematic use of circular width.

4. Applications

In this section, we give a few applications of circular width. More concrete applications can be found
in [9] and [11].

Let us introduce some notation. For a locally univalent function f on D, the quantity Tf = f ′′/f ′ is
called the pre-Schwarzian derivative of f and measured by the norm

‖Tf‖D = sup
z∈D

(1 − |z|2)|Tf (z)|.

Note that this can be described by ‖Tf‖D = VD(f ′). Let A denote the class of holomorphic functions f
on D normalized by f(0) = 0, f ′(0) = 1.

Theorem 9. Let Ω be a proper subdomain of the punctured plane C∗ with W (Ω) < 2. If f ∈ A satisfies
f ′(D) ⊂ Ω, then |f(z)| <M, z ∈ D. Here M is a constant depending only on W (Ω).

The constant M can be given by

M = λ
[
ψ

( − λ
2

) − ψ
(

1−λ
2

)] − 1,

where λ = W (Ω)/2 and ψ(x) = Γ′(x)/Γ(x) is the digamma function (see [7]).
It may be interesting to find a characterization of such subdomains Ω of H that f ′(D) ⊂ Ω implies

boundedness of f ∈ A. Note that the condition f ′(D) ⊂ H implies univalence of f (Noshiro-Warschawski
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theorem). Recently, Chuaqui and Gevirtz [6] gave a characterization of such subdomains Ω of H that
f ′(D) ⊂ Ω implies quasiconformal extensibility of f ∈ A.

We next apply Theorem 7 to the problem of quasiconformal extensibility. Our result is based the
following theorem due to J. Becker. See, for sharpness, Becker and Pommerenke [5].

Theorem 10 (Becker [4]). Let f ∈ A be locally univalent. If ‖Tf‖D ≤ 1, then f is univalent. Further-
more, if ‖Tf‖ ≤ k for k ∈ [0, 1), then f has a K-quasiconformal extension to the whole plane, where
K = (1 + k)/(1 − k).

Making use of this result, we can show the following.

Theorem 11. Suppose that a proper subdomain Ω of the punctured plane C
∗ satisfies W (Ω) ≤ k for

some k ≤ 1. If f ′(D) ⊂ Ω for f ∈ A, then f is univalent and, moreover, f has a K-quasiconformal
extension to the whole plane when K = (1 + k)/(1 − k) <∞.

See [11] for a counterpart of the theorem for meromorphic functions.

Proof. As we noted, the condition f ′(D) ⊂ Ω implies that ‖Tf‖D ≤ W (Ω) ≤ k. We now apply Theorem
10 to deduce the assertions.

Combining this with examples presented in the previous section, we obtain a series of corollaries.
(Remember the fact that circular width is invariant under rotations.) The first corollary was noted by
Avhadiev and Aksent’ev [3, pp. 33–34] at least when γ = 0.

Corollary 12. Let 0 < k ≤ 1 and f ∈ A. If |argf ′(z) − γ| < πk/4 in |z| < 1 for some real constant γ,
then f is univalent and, moreover, it extends to a K-quasiconformal mapping of the whole plane when
K = (1 + k)/(1 − k) <∞.

Note also that the condition |argf ′(z)| < M, |z| < 1, implies quasiconformal extensibility of f when
M < π/2 (see [6]).

Corollary 13. Let k, r, R be positive numbers with 0 < log(R/r) ≤ πk/2 and f ∈ A. If r < |f ′(z)| < M
in |z| < 1, then f is univalent and, moreover, it extends to a K-quasiconformal mapping of the whole
plane when K = (1 + k)/(1 − k) <∞.

We omit the other examples.
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