
ON THE BOTTOM OF THE SPECTRUM OF A RIEMANN SURFACE

OF INFINITE TOPOLOGICAL TYPE

TOSHIYUKI SUGAWA

Abstract. In this note, we shall present a suÆcient condition for the positivity of the
bottom of the spectrum of a Riemann surface. In particular, we shall show that an open
Riemann surface of bounded geometry and of �nite genus has positive bottom of the
spectrum.

1. Introduction

Let R be a hyperbolic Riemann surface endowed with the Poincar�e (or hyperbolic)
metric �R = �R(z)jdzj of constant negative curvature �1: Although some authors prefer
to use �R=2 of curvature �4 instead of �R; we adopt here �R of curvature �1 following the
tradition in the spectral geometry. The Laplace-Beltrami operator �� with respect to
the hyperbolic metric acts on the space C1

c (R) of smooth real-valued functions on R with
compact support. This operator is known to uniquely extend to a positive unbounded
self-adjoint operator on L2(R):
In this note, we shall consider the bottom �(R) of the L2-spectrum of the hyperbolic

Riemann surface. This quantity can be described by Rayleigh's quotient:

�(R) = inf
'2C1c (R)

RR
R
jr'j2dvolRR
R
'2dvol

:

The bottom of the spectrum �(R) is important in relation with the critical exponent
of convergence Æ(R) of R: This quantity is de�ned as the in�mum of numbers Æ > 0 such
that X


2�

exp(�Æd�(0; 
(0))) <1;

where � is a Fuchsian group acting on the unit disk � uniformizing R; i.e. R �= �=� and
d� denotes the hyperbolic distance in �: Note here that this de�nition does not depend
on the particular choice of �: The critical exponent of convergence of R is known to be
equal to the Hausdor� dimension of the conical limit set of the Fuchsian group � (cf. [5]).
The following is known as the theorem of Elstrodt-Patterson-Sullivan.

Theorem 1.1 ([7]).

�(R) =

(
1
4

if 0 � Æ(R) � 1
2
;

Æ(R)(1� Æ(R)) if 1
2
� Æ(R) � 1:
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In particular, �(R) > 0 if and only if Æ(R) < 1:

In the case when the surface is of �nite topological type, it is known that the bottom
of the spectrum is 0 if and only if the surface is of �nite conformal type, in other words, a
compact Riemann surface with �nitely many points removed. On the other hand, it seems
that only a few results are known in the case of in�nite topological type. Among them,
for plane domains, Fern�andez and Rodr��guez proved the following remarkable result.

Theorem 1.2 ([2] and [3]). If R is a hyperbolic plane domain of bounded geometry, then
�(R) > 0: Moreover, for a separated sequence (an) of R; i.e.,

inf
n6=m

dR(an; am) > 0;

the domain R0 := R n fang satis�es �(R0) > 0; too.

In the above theorem, dR denotes the distance in R determined by the hyperbolic
metric �R; that is, dR(a; b) is the in�mum of the hyperbolic lengths (measured by �R)
of arcs in R joining a with b: For non-empty subsets A and B of R; we also denote by
dR(A;B) the hyperbolic distance of A and B in R: And a hyperbolic Riemann surface R
is called of bounded geometry if the injectivity radius of R is (uniformly) away from 0, in
other words, positive is the in�mum L(R) of the hyperbolic lengths of those curves which
are homotopically nontrivial in R: For plane domains, several equivalent conditions for
boundedness of geometry are known (for example, see [6]).
Actually, the authors of [3] proved the above theorem by showing the hyperbolic isoperi-

metric inequality. Now we introduce a variant of Cheeger's isoperimetric constant of R :

h(R) := sup
D2DR

jDj

j@Dj
;

where DR denotes the set of relatively compact subdomains of R with piecewise smooth
boundary, jDj = jDjR =

RR
D
�R(z)

2dxdy and j@Dj = j@DjR =
R
@D

�R(z)jdzj: We say that
R satis�es the hyperbolic isoperimetric inequality if h(R) <1: The following result says
that the validity of the hyperbolic isoperimetric inequality implies the positivity of �(R):

Theorem 1.3 (Cheeger's inequality).

1

4h(R)2
� �(R):

In fact, it is also shown that �(R)h(R) � C for an absolute constant C < 3=2 in [3],
therefore �(R) > 0 if and only if h(R) <1:

Our main aim in this note is to generalize Theorem 1.2 to the case of �nite genus.

Theorem 1.4 (Main Theorem 1). Let R be a non-compact hyperbolic Riemann surface
of bounded geometry. Suppose that the genus g of R is �nite. Then, the isoperimetric
constant h(R) satis�es

h(R) � 1 +
2�minf2g; 1g

L(R)
:(1.1)
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In particular, �(R) > 0:

The Riemann surface R satisfying the above hypothesis is roughly isometric to a plane
domain D with L(D) > 0 in the sense of Kanai, thus the theorem of Kanai [4] tells us
that Theorem 1.2 implies also �(R) > 0: Nevertheless our main theorem seems to have
its own right in that our statement is quantitative. Of course, the latter part of Theorem
1.2 can also be generalized for �nite genus case. In this note, we give more general result
with an explicit estimate in the case of �nite genus.

Theorem 1.5 (Main Theorem 2). Let R be a non-compact hyperbolic Riemann surface
of bounded geometry and of �nite genus and A1; A2; � � � a (�nite or in�nite) sequence of
compact subsets of R such that there exist a sequence x1; x2; � � � in R and constants �; �
and H satisfying the following conditions.

1. 0 < 2� < � < L(R)=2 and 1 � H <1;
2. dR(xk; xl) � � if k 6= l;
3. An � fx 2 R; dR(x; xn) � � � 2�g; and
4. h(Bn n An) � H;

where Bn = B(xn; �) = fx 2 R; dR(x; xn) < �g: Then R0 = R n [1n=1An satis�es h(R0) �
K <1; where K is a constant depending only on h(R); �; � and H: In particular �(R0) >
0:

Remark 1. The constant K above is explicitly given in the proof in Section 3.

Remark 2. Note that Bn is simply connected because � < L(R): Hence, by Corollary 2.2
in the following, we can see that the condition (4) is ful�lled if An is connected. Another
suÆcient condition for (4) can be given by application of Theorem 1.5 itself.
Taking closed disks �B(xn; "n) as An with "n ! 0; we have an example of the surface

R0 with �(R0) > 0 while L�(R0) = L(R0) = 0; where L�(R0) denotes the in�mum of the
hyperbolic lengths of closed geodesics in R0: Note that a similar exapmle was given in [2].

We should remark that the assumption of �niteness of genus cannot be eliminated in
our main theorems. In fact, Brooks showed the following result.

Theorem 1.6 (Brooks [1]). Let R be a compact Riemann surface of genus g > 1 and

F : R̂ ! R be a holomorphic unbranched Galois covering. Then �(R̂) = 0 if and only if

the covering transformation group G = f
 2 Aut(R̂);F Æ 
 = Fg �= �1(R; �)=�1(R̂; �) is
amenable.

For the de�nition of amenability, see [1], for example. Here we only cite the fact that
if G is abelian then amenable while G contains a free group with two generators then
non-amenable.
We also remark that L(R̂) � L(R) > 0 in the above case, so the boundedness of

geometry need not imply the positivity of the bottom of the spectrum in the case of
in�nite genus.
It is easy to show that if R is of �nite conformal type and F : R̂! R is a holomorphic

unbranched Galois covering with amenable covering transformation group then �(R̂) = 0:

In particular, since R̂ = C nZ! (C nZ)=Z = C nf0; 1g is a Z-cover, thus amenable cover,
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we have �(R̂) = 0: On the other hand, evidently L�(R̂) > 0: Therefore the condition
L�(R) > 0 need not guarantee the positivity of �(R):

This article is organized as follows. In Section 2, we will show a fundamental estimate
of the hyperbolic area of a relatively compact subdomain by the method of M. Suzuki [8],
from which Theorem 1.4 follows.
Section 3 is devoted to the proof of Theorem 1.5. Essential idea in the proof is the

same as in [3], but we need more e�orts.
Finally the author would like to express his sincere gratitude to Professor Takeo Ohsawa

for giving him a chance to consider the matter in this note and have a talk about it in
the conference at RIMS.

2. Estimate of hyperbolic area

Basically following the method in [8] by M. Suzuki as is indicated in [2], we shall make
an estimate of the hyperbolic area of a relatively compact subdomain of a hyperbolic
Riemann surface by the length of its boundary.
Let R be a hyperbolic Riemann surface with the hyperbolic metric �R = �R(z)jdzj of

constant negative curvature �1; i.e., there exists a holomorphic universal covering map
f : � ! R from the unit disk � onto R and �R is the Riemannian metric determined
by 2jdzj

1�jzj2
= f ��R: Note that the hyperbolic metric �R is independent of the particular

choice of the universal covering map f: We denote by � the deck transformation group
f
 2 Aut(�) = PSU(1; 1); f Æ 
 = fg; thus � is the Fuchsian group which uniformizes R:
Now we show the following

Lemma 2.1. Let D be a relatively compact subdomain with piecewise smooth boundary
in an arbitrary hyperbolic Riemann surface R: Then,

jDj � j@Dj+ 2�(m+ 2k � 1):(2.1)

where m is the number of boundary components of D and k is the genus of D:

Proof. If D has trivial (=contractible) boundary curves then these curves bound disks
in R; so we obtain a new domain by atatching D the disks bounded by these curves.
In this procedure, the hyperbolic length of the boundary and the number of boundary
components decrease while the hyperbolic area increases. Hence, in order to prove (2.1),
we may assume that D has no trivial boundary curves.
Let a1; � � � ; am be the boundary curves of D: Fix a point x0 in am; then it is easy

to show that there exist simple smooth arcs b1; � � � ; b2k+m�1 such that bj starts from
and ends at x0 for j = 1; � � � ; 2k and starts from x0 and ends at a point in aj�2k for
j = 2k + 1; � � � ; 2k +m� 1; and each arc is contained in R and does not intersect other
arcs except for its end points. Therefore, D0 = D n [2k+m�1

j=1 bj is a relatively compact

simply connected subdomain of R: Let D̂0 be a connected component of f�1(D0): Then

f : D̂0 ! D0 is biholomorphic and D̂0 is a Jordan domain bounded by the union of simple
closed arcs â1; � � � ; âm and b̂+1 ; b̂

�
1 ; � � � ; b̂

+
2k+m�1; b̂

�
2k+m�1; where âj is a lift of aj and b̂

+
j and

b̂�j are lifts of bj: We note here that there exists a 
j 2 � n f1g which maps b̂+j onto b̂�j
with reversing orientation for each j = 1; � � � ; 2k +m� 1:
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Since f : � ! R is a local isometry with respect to the hyperbolic metric, we have
jDjR = jD0jR = jD̂0j� and jajjR = jâjj�: Noting that the hyperbolic density function
�0(z) =

2
1�jzj2

of � satis�es

�20dx ^ dy = �� log �0dx ^ dy = �d�d log �0;

where �dF = �@F
@y
dx+ @F

@x
dy; we can see by Stokes' theorem that

jDjR =

ZZ
D̂0

4dx ^ dy

(1� jzj2)2
= �

ZZ
D̂0
d�d log �0 = �

Z
@D̂0

�d log �0:

Since

�d log �0 = �i
�zdz � zd�z

1� jzj2
= Im

�
2�zdz

1� jzj2

�
= �Im!;

where ! = �2�z(1� jzj2)�1dz; we have

jDjR = Im

Z
@D̂0

! =
mX
j=1

Ij +
2k+m�1X

l=1

Jl:

In the above, Ij = Im
R
âj
! and Jl = Im(

R
b̂+
l

! +
R
b̂�
l

!):

First, we note that jIjj �
R
âj

2jdzj
1�jzj2

= jajjR: Next, since we can write 
l as 
l(z) =
��z+��
�z+�

for constants � and � with j�j2 � j�j2 = 1; we see that

! � 
�l ! =
2�dz

�z + �
= 2d log(�z + �):

We then get that

Jl = Im

 Z
b̂+
l

! �

Z

l(b̂

+
l
)

!

!
= Im

Z
b̂+
l

(! � 
�l !)

= 2Im

Z
b̂+
l

d log(�z + �) = 2

Z
b̂+
l

d arg(�z + �):

Because the disk f�z + �; jzj < 1g does not contain the origin, we have jJlj < 2�: From
these observations, we can conclude that

jDjR �
mX
j=1

jajjR + 2�(2k +m� 1) = j@DjR + 2�(2k +m� 1):

Now the proof is completed.

By this lemma, we also have the following result, which will be used later. This state-
ment can be found in [3] but the proof is omitted there, so we include it for convenience
of the reader.

Corollary 2.2 (cf. [3]). For a simply or doubly connected hyperbolic Riemann surface R
it follows that h(R) = 1:
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Proof. When R is simply connected, we may assume that R is the unit disk �: By the
above lemma, jDj � j@Dj for any D 2 DR; hence h(R) � 1: On the other hand, for
Dr = fz 2 �; jzj < rg; we can calculate that jDrj� = 4�r2(1 � r2)�1 and j@Drj� =
4�r(1� r2)�1; so we see that h(R) = 1:
When R is doubly connected, the result does not follow directly from the above lemma.

To see h(R) � 1; it suÆces to show that jDj � j@Dj only for doubly connected domains
D in DR without trivial boundary components. Fix a smooth arc b in D connecting both
of boundary components of D: Then D0 = D n b is simply connected. Let f : �! R be a
holomorphic universal covering map and � its covering transformation group. Then � is
generated by a single element, say 
: Let W be a connected component of f�1(D0): Then

@W consists of a lift â1; â2 of boundary curves a1; a2 of D and lifts b̂+ and b̂� of b; where

(b̂�) = b̂+: We denote by Wn the interior of [n�1j=0


j(W ) for n = 1; 2; � � � : Note here that

@Wn = [n�1j=0

j(â1 [ â2) [ 
n(b̂�) [ b̂�: Since Wn is simply connected, the above lemma

yields that

njDjR = jWnj� � j@Wnj� = njâ1j� + njâ2j� + 2jb̂�j� = nj@DjR + 2jbjR:

Letting n ! 1; we then get jDj � j@Dj; thus h(R) � 1: Actually, one can show that
h(R) = 1; as above. For example, if R is of �nite modulus, we may assume that R =
fr < jzj < 1=rg with 0 < r < 1: Then Ds = fs < jzj < 1=sg with s = r2�=� satis�es that
jDsj = 2` tan � and j@Dsj = 2`= cos �; where ` = �2= log 1=r; thus jDsj=j@Dsj = sin �: This
shows that h(R) � 1:

Proof. Proof of Theorem 1.4 It is enough to show the hyperbolic isoperimetric inequality
only for D 2 DR without trivial boundary components. Then, recalling that L(R) is the
in�mum of hyperbolic lengths of non-trivial loops in R; we have j@Dj � mL(R) � L(R);
where m denotes the number of boundary components of D: Let k be the genus of D:
Then k � g; thus by Lemma 2.1 it holds that

jDj � j@Dj+ 2�(m+ 2k � 1) �

�
1 +

2�

L(R)

�
j@Dj+ 2�(2g � 1):

In the case of g = 0; we immediately obtain (1.1). When g � 1; it follows that

jDj �

�
1 +

2�

L(R)

�
j@Dj+ 2�(2g � 1)

j@Dj

L(R)
=

�
1 +

4�g

L(R)

�
j@Dj;

thus now (1.1) is proved.

Remark . As is seen from the above proof, we have slightly more general result as follows.
Let R be a conformally in�nite Riemann surface, i.e., of in�nite hyperbolic area. Suppose
that the genus g and the number n of punctures of R are �nite and the in�mum L�(R) of
the hyperbolic lengths of closed geodesics in R is positive. Then we have

h(R) � 1 +
2�minf2g + n; 1g

L�(R)
:
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3. Estimate for subdomains with totally geodesic boundary

In this section, we explain another approach for estimation of the hyperbolic area of
subdomains by its boundary length. Now we introduce another class of subdomains,
which is canonical in some sense, and easier to treat than DR:
We suppose that the hyperbolic Riemann surface R is not simply nor doubly connected,

i.e., the fundamental group of R is not abelian. (Otherwise, we know already that h(R) =

1; so have nothing to do.) Let Dgeod
R be the set of those subdomains of R whose end

consists of �nitely many pairwise disjoint simple closed geodesics in R and �nitely many
punctures. In other words, D 2 Dgeod

R if and only ifD is of �nite topological type (k; n;m);
where k is the genus and n and m the numbers of punctures and holes, respectively, of
D and the relative boundary @D of D in R consists of m simple closed geodesics of R:
We remark that the above D is not neccesarily relatively compact in R but has �nite
hyperbolic area 2�(2k+m+n� 2): In fact, the double eD of D is of �nite conformal type
(G;N) = (2g+m� 1; 2n); so has hyperbolic area 2�(2G+N � 2) = 4�(2g+m+ n� 2);

thus jDjR = j eDj=2 = 2�(2g +m+ n� 2): Now we de�ne the auxiliary constant hgeod(R)
by

hgeod(R) = sup
D2Dgeod

R

jDjR
j@DjR

:

The following is essentially due to Fern�andez-Rodr��guez [3] and will be the key to our
argument here.

Lemma 3.1. For a hyperbolic Riemann surface R with non-abelian fundamental group,

hgeod(R) � h(R) � hgeod(R) + 2:

Proof. The left-hand side inequality immediately follows from the de�nition. We now
show the right-hand side. Let D be in DR: In order to show jDj � (hgeod(R)+ 2)j@Dj; we
may assume thatD has no trivial boundary components. Then each boundary component
aj of D is freely homotopic to either a closed geodesic bj or a puncture Pj: We denote
by D1 the domain obtained from D by replacing its boundary components (or ends) aj
by bj or Pj: By assumption, D1 is non-degenerate, so D1 2 Dgeod

R : Clearly j@D1j � j@Dj
and the di�erence D1 nD consists of simply or doubly connected components Wj's, thus
Lemma 2.2 implies

jD1j � jDj � jD1j � jD \D1j =
X
j

jWjj �
X
j

j@Wjj � j@D1j+ j@Dj � 2j@Dj;

which proves the lemma.

Remark . Lemma 3.1 also proves Theorem 1.4 with slightly di�erent estimate:

h(R) � 2 +
2�maxf2g � 1; 1g

L(R)
:

One may see that this estimate is nearly optimal.

We need also the following elementary fact.
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Lemma 3.2. Let R be a hyperbolic Riemann surface and S its subdomain. For a subset
X of S we set Æ = dR(X; @S) = inffdR(x; s); x 2 X; s 2 @Sg: Then it holds that 1 �
�S=�R � coth Æ on X:

Proof. Take any point x0 2 X and �x it. Let f : � ! R be a holomorphic universal
covering map of R with f(0) = x0: Then, by assumption, �r := fjzj < rg = fz 2

�; d�(0; z) < Æg is contained in Ŝ := f�1(S); where r = tanh Æ: Then the Schwarz-Pick
lemma implies that

1 � �S(x0)=�R(x0) = �Ŝ(0)=��(0) = �Ŝ(0) � ��r
(0) = 1=r = coth Æ;

thus the proof is now �nished.

Proof. Proof of Theorem 1.5 In the following, let R and R0 be as in Theorem 1.5 as well
as An; xn; �; �;H and Bn: We �x D 2 Dgeod

R0 :
Set B0

n = fx 2 R; dR(x; xn) < � � �g and N = fn;D \ B0
n 6= ;g: Then jDjR0 =

jD \ R00jR0 +
P

n2N jD \ B0
njR0; where R

00 = R n [1n=1 �B
0
n: Note that dR(R

00; @R0) � � and
that dR0(B

0
n n An; @Bn) � dR(B

0
n n An; @Bn) � �: By Lemma 3.2, we can estimate as

jD \ R00jR0 � coth2 � � jD \R00jR � h(R) coth2 � � j@(D \ R00)jR

� h(R) coth2 � � j@(D \ R00)jR0

= h(R) coth2 �(j@D \R00jR0 +
X
n2N

jD \ @B0
njR0)

and

jD \B0
njR0 � jD \ B0

njBnnAn
� h(Bn n An)j@(D \B0

n)jBnnAn

� H coth �(j@D \ B0
njR0 + jD \ @B0

njR0):

Here we can further see that for each n 2 N;

jD \ @B0
njR0 � j@B0

njR0 � coth �j@B0
njR = coth � � 2� sinh(2� � 2�)

� ���1 coth � sinh(2� � 2�)j@D \ BnjR0 ;

because j@D \ BnjR0 � 2dR0(B
0
n; @Bn) � 2�: By summing up these estimates, we obtain

jDjR0 � h(R) coth2 �j@D \ R00jR0 +H coth �
X
n2N

j@D \B0
njR0

+ (h(R) coth2 � +H coth �) � ���1 coth� sinh(2� � 2�)j@D \ BnjR0

� (h(R) coth2 � +H coth �)(1 + ���1 coth � sinh(2� � 2�))j@DjR0 :

The last inequality shows that

h(R0) � hgeod(R0) + 2

� (h(R) coth2 � +H coth �)(1 + ���1 coth � sinh(2� � 2�)) + 2:
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