
A REMARK ON AHLFORS' UNIVALENCE CRITERION

TOSHIYUKI SUGAWA

Abstract. In this note, we will remove an additional assumption made for Ahlfors'

univalence criterion. This leads to an estimate of the inner radius of univalence for an

arbitrary quasidisk in terms of a quasiconformal reection.

1. Introduction

Let D be a domain in the Riemann sphere bC with the hyperbolic metric �D(z)jdzj
of constant negative curvature �4: For a holomorphic function ' on D; we de�ne the
hyperbolic sup-norm of ' by

k'kD = sup
z2D

�D(z)
�2j'(z)j:

We denote by B2(D) the complex Banach space consisting of all holomorphic functions
of �nite hyperbolic sup-norm. For a holomorphic map g : D1 ! D2; the pullback g� :
' 7! ' Æ g � (g0)2 is a linear contraction from B2(D2) to B2(D1): In particular, if g is
biholomorphic, g� : B2(D2) ! B2(D1) becomes an isometric isomorphism. As is well
known, the Schwarzian derivative Sf = (f 00=f 0)0� (f 00=f 0)2=2 of a univalent function on D
satis�es kSfkD � 12 (see [?]). This result is classical for the unit disk D = fz 2 C ; jzj < 1g;
actually, a better estimate kSfkD � 6 holds. On the other hand, Nehari's theorem [?]
asserts that if a locally univalent function f on D satis�es kSfkD � 2; then f is necessarily
univalent. Hille's example [?] shows that the number 2 is best possible. We now de�ne
the quantity �(D); which is called the inner radius of univalence of D; as the in�mum
of the norm kSfkD of those locally univalent meromorphic function f on D which are
not globally univalent. In other words, �(D) is the possible largest value � � 0 with the
property that the condition kSfkD � � implies univalence of f in D: In the case D = D ;
we already know �(D ) = 2: For a comprehensive exposition of these notions and some
background, we refer the reader to the book [?] of O. Lehto.
Ahlfors [?] showed that every quasidisk has positive inner radius of univalence. Con-

versely, Gehring [?] proved that if a simply connected domain has positive inner radius of
univalence then it must be a quasidisk. Later, Lehto [?] pointed out the inner radius of
univalence of a quasidisk can be estimated by the Ahlfors method as

�(D) � 2 inf
z2D0

j�@�(z)j � j@�(z)j

j�(z)� zj2�D(z)2
;(1)

where � is a quasiconformal reection in @D which is continuously di�erentiable o� @D
and D0 = D n f1; �(1)g: However, in order to obtain the estimate (1) rigorously, a kind
of approximation procedure must work, so an additional assumption was needed. For
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example, Lehto [?, Lemma III.5.1] assumed the quasidisk D to be exhausted by domains
of the form frz; z 2 Dg for 0 < r < 1: More recently, Betker [?] gave a similar result
for general quasidisks under the assumption that the quasiconformal reection � is of a
special form associated with the L�owner chains. For another additional condition, see a
remark at the end of the next section.
Remark that if we content ourselves with an estimate of the form �(D) � C(K) for a

K-quasidisk D; where C(K) is a positive constant depending only on K; the original idea
of Ahlfors [?] is suÆcient (see also [?, Chapter VI] and [?, Theorem II.4.1]).
Our main result is to show (1) without any additional assumption, which might be

known as a kind of folklore.

Theorem 1. Let D be a quasidisk with a quasiconformal reection � in @D which is

continuously di�erentiable o� @D: Then the inequality (1) holds for D:

2. Proof of main result

First of all, we make a quick review of the original proof of (1) by Ahlfors under an
additional assumption. Let a quasiconformal reection � in @D be given, i.e., � is an
orientation-reversing homeomorphic involution of bC keeping each boundary point of D
�xed and satisfying that �(�z) is quasiconformal. Further suppose that � is continuously

di�erentiable on bC n @D: We note that j@�j � k0j�@�j for some constant 0 � k0 < 1:
Noting that the inequality (1) is invariant under a M�obius transformation (see [?, Sec.

II 4.1]), we may assume that a quasidisk D is contained in C : We take a ' 2 B2(D) with
k'kD < "0; where "0 denotes the right-hand side of the inequality (1).
Let �0 and �1 be the solutions of the linear di�erential equation

2y00 + 'y = 0(2)

in D with the initial conditions �0 = 1; �00 = 0 and �1 = 0; �01 = 1; respectively, at a
reference point w0 in D: Then it is well known that f = �1=�0 satis�es the Schwarzian
di�erential equation Sf = ' in D and has the normalization f(w0) = f 0(w0) � 1 =
f 00(w0) = 0: To extend f to the whole sphere, we consider the map

F (w) =
�1(w) + (�(w)� w)�01(w)

�0(w) + (�(w)� w)�00(w)
:

A direct cumputation shows that F is a local C1 di�eomorphism in D and satis�es

@F (w)
�@F (w)

=
@�(w) + (�(w)� w)2Sf(w)=2

�@�(w)
:

Hence the assumption k'kD < "0 implies

k@F=�@Fk1 � k := 1� (1� k0)(1� k1) < 1;

where k1 = k'kD="0 < 1: Therefore, if the map

f̂(w) =

(
f(w) for w 2 D;

F (�(w)) for w 2 D� = bC nD
(3)
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continuously extends to the boundary @D and locally homeomorphic nearby there, f̂
would become a local homeomorphism of the Riemann sphere, and hence a (quasiconfor-
mal) homeomorpshism of it.
In particular, if @D is an analytic Jordan curve and if the quasiconformal reection

� is continuously di�erentiable at any point, it is easily veri�ed that f̂ is a local C1-
di�eomorphism of bC and then a quasiconformal extension of f for ' holomorphic in D;
namely, holomorphic in a neighborhood of D:
For a general ' 2 B2(D); a crux will be the following, which is essentially due to Bers

[?, Lemma 1].

Proposition 2. Let D be a Jordan domain in bC : For any ' 2 B2(D) there exists a

sequence ('j)j of holomorphic functions in D such that k'jkD � k'kD and 'j tends to

' uniformly on each compact subset of D as j !1:

Proof. We denote by g : D ! D the Riemann mapping function of D with g(0) = w0

and g0(0) > 0: Let Dj; j = 1; 2; : : : be Jordan domains with Dj+1 � Dj and withT
jDj = D: Then the Carath�eodory kernel theorem implies that the Riemann mapping

functions gj of Dj with gj(0) = w0 and g0j(0) > 0 converge to g uniformly on each

compact subset of the unit disk as j tends to 1: Now we set 'j = (g Æ g�1j )�': We then
have k'jkD � k'jkDj

= k'kD by the Schwarz-Pick lemma: �D � �Dj
: We also have

'j ! ' locally uniformly as j !1:

With this result, the following lemma implies our main result.

Lemma 3. Suppose that ' 2 B2(D) with k'kD � k1"0 is holomorphic in D; where

0 � k1 < 1 and "0 denotes the quantity in the right-hand side of (1). Then the function

f̂ de�ned by (3) extends to a K-quasiconformal homeomorphism of the Riemann sphere,

where K = (1 + k)=(1� k) and k = 1� (1� k0)(1� k1):

Actually, we can prove our main theorem as follows. Let ' 2 B2(D) satisfy k'kD < "0
and set k1 = k'kD="0: We take a sequence ('j)j as in Proposition 2. Let f̂ and f̂j be

the functions in bC n @D de�ned by (3) for ' and 'j; respectively. Then, by the above

lemma, each f̂j can be continued to a K-quasiconformal homeomorphism of bC ; where
K = (1 + k)=(1 � k) and k = 1 � (1 � k0)(1 � k1): Since normalized K-quasiconformal

mappings form a normal family, f̂j has a subsequence converging to a K-quasiconformal

mapping in bC uniformly. By construction, the limit mapping coincides with f̂ in bC n @D:

This implies that f̂ has a K-quasiconformal extension to the whole sphere. Now the proof
of our main theorem is complete except for a proof of the above lemma.

Remark. Under the assumption that ' is holomorphic in D with k'kD < "0; a direct
calculation shows

@f̂(z) = �
1 + (z � �(z))2'(�(z))@�(z)=2

(�0(�(z)) + (z � �(z))�00(�(z))
2

and

�@f̂(z) = �
(z � �(z))2'(�(z))�@�(z)=2

(�0(�(z)) + (z � �(z))�00(�(z))
2

3



at every z 2 D� n f1; �(1)g: Therefore, if (�(z) � z)2 �@�(z) vanishes at the boundary

@D; then we would obtain continuous extensions of @f̂ and �@f̂ to bC : Moreover, the limits
of

f̂(z + t)� f̂(z)

t
and

f̂(z + it)� f̂(z)

t
when t tending to 0 along the real axis both exist and are equal to f 0(z) and if 0(z);
respectively for each z 2 @D because when z+ t or z+ it approaches to z in D� the above
quotients tend to the desired values by (4) below. This implies that our f̂ has continuous

partial derivatives everywhere in bC : Hence, in this case, we can conclude that f̂ is a local
C1-di�eomorphism of bC ; and then, a global C1-di�eomorphism of it.
We note that it is always possible to take such a quasiconformal reection � for any

quasidisk D (see [?] or [?, Section II.4]).

3. Proof of Lemma 3

Let ' be as in Lemma 3. Then the solutions �0 and �1 of (2) are holomorphic in D:

Thus f̂ can be continuously extended to the whole sphere and f̂(@D) is locally a conformal
image of a quasi-circle. Now we require an extension theorem for quasiregular mappings,
where a continuous map f from a plane domain 
 into bC is called (K-)quasiregular if
f can be decomposed into the form g Æ ! where ! is a (K-)quasiconformal mapping on

 and g is a non-constant meromorphic function on !(
) (see [?, Chapter VI] where
the authors used the term \quasiconformal function" instead of \quasiregular mapping").
Note that a non-constant continuous function f : 
! C is K-quasiregular if and only if
f is ACL=ACL1 and j�@f j � kj@f j a.e. in 
; where k = (K � 1)=(K + 1) (see [?]).

Lemma 4. Let 
 be a plane domain and C an open quasi-arc (or a quasi-circle) in 


such that 
 n C is an open set in bC : Suppose that f : 
 ! bC is a continuous map such

that f j
nC is a locally injective K-quasiregular map and that, for each x 2 C; f maps

C \ U injectively onto a quasi-arc for some open neighborhood U of x in 
: Then f is

K-quasiregular in 
:

Proof. If once we know that f is quasiregular in 
; we can conclude that f is K-
quasiregular because j�@f=@f j � k a.e. by assumption. Since quasiregularity is a local
property, it suÆces to show that f is quasiregular in an open neighborhood U of each
x 2 C: The assumption allows us to take U so that f maps U \C injectively onto a quasi-
arc. Then, by composing suitable quasiconformal mappings, we may further assume that
U is an open disk centered at x = 0 with U \ C = U \ R and that f(U \ R) � R: Set
U� = fz 2 U ;�Im z � 0g: By the reection principle for quasiregular mappings [?], the
mapping f jU� extends to a quasiregular one in U for each signature. This means f is
ACL in U; and hence f is quasiregular there.

By this lemma, our mapping f̂ turns out to be a K-quasiregular mapping on bC ; that is,
f̂ = g Æ! for a K-quasiconformal mapping ! : bC ! bC and a rational function g: Suppose
that the degree of g is greater than one. Then there exists a branch point, say b; of g:
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Without loss of generality, we may assume that !(0) = b and1 2 C = @D: Furthermore,
we may assume that �0(0) 6= 0: (If not, consider 1=f instead of f in the following.)
Now we recall an important fact on quasiconformal reections.

Lemma 5 ([?, Lemma I.6.3]). Let � be a K-quasiconformal reection in C with 1 2 C:
Then

1

c(K)
jz � aj � j�(z)� aj � c(K)jz � aj

for any z 2 C and a 2 C; where c(K) > 1 is a constant depending only on K:

Since f̂ is never injective near 0 but f̂ jD = f = �1=�0 is injective near 0; we can select
sequences of pairs of points zn and wn in D and closed arcs �n connecting zn and wn in D
such that F (zn) = F (wn) and F (�n) has winding number 1 around F (0) = f(0); and that
zn; wn and diam�n all tend to 0 as n tends to 1; where diam stands for the Euclidean
diameter.
Now we consider the asymptotic behavior of F (z) as z ! 0: We have

F (z)� F (0) =
�1(z) + (�(z)� z)�01(z)

�0(z) + (�(z)� z)�00(z)
�
�1(0)

�0(0)

=
(�0(0)�1(z)� �1(0)�0(z)) + (�(z)� z)(�0(0)�

0
1(z)� �1(0)�

0
0(z))

�0(0)(�0(z) + (�(z)� z)�00(z))
:

By the relation �(z) = �(0) + z�0(0) +O(z2) or similar ones, the numerator in the above
can be calculated as

z (�0(0)�
0
1(0)� �1(0)�

0
0(0)) + (�(z)� z) (1 + z (�0(0)�

00
1(0)� �1(0)�

00
0(0))) +O(z2)

when z ! 0: Noting the relations �0�
0
1 � �1�

0
0 � 1 and �00j = �'�j=2 and Lemma 5, we

obtain

F (z)� F (0) = �0(0)
�2�(z) +O(z2)(4)

as z ! 0 in D:
Now we may assume jznj � jwnj for every n: Since F (zn) = F (wn) we have Æn :=

jz�n � w�
nj = O(jznj

2) as n ! 1 by (4), where we set z�n = �(zn) and w�
n = �(wn):

Similarly, we have �0(0)
2(F (�n(t)) � F (0))� ��n(t) = O(�n(t)

2) = O(��(t)2) as n ! 1;
where ��n = �(�n): In particular,

j�0(0)
2(F (�n(t))� F (0))� ��n(t)j < j��n(t)j(5)

holds for suÆciently large n:
On the other hand, linear connectedness ofD� asserts the existence of a constantM > 1

such that any pair of points in D� \ B(a; r) can be joined by a curve in D� \ B(a;Mr)
for all a 2 C and r > 0; where B(a; r) stands for the closed disk centered at a of radius r
(see [?] or [?]). In particular, there exists a sequence of curves ��n connecting w

�
n and z�n in

D� \ B(z�n;MÆn): Therefore we have j�0(0)
2(F (zn)� F (0))� ��n(t)j � MÆn +O(jznj

2) =
O(jznj

2) as n!1; and then

j�0(0)
2(F (zn)� F (0))� ��n(t)j < j��n(t)j(6)

for n large enough.
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Now we conclude that the closed curves F (�n)� F (0) and �n := ��n � �
�
n have the same

winding number around 0 for suÆciently large n from (5) and (6). By the choice of �n;
we see that �n has winding number 1; and hence separates 0 from 1 for such n: Since
0 2 @D and �n is a curve in D�; D is contained in a bounded component of C n �n: In
particular, we have diamD � diam�n � diam��n + diam��n for suÆciently large n: Since
both diam��n and diam��n tend to 0 as n ! 1; we would have diamD = 0; which is
impossible. This contradiction is caused by the assumption deg g > 1: Theorefore we
can now conclude that g is a M�obius transformation, and hence the proof of Lemma 3 is
complete.
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