ON THE SCHLICHT PROJECTIVE STRUCTURES ON COMPACT BORDERED RIEMANN SURFACES WITH

Toshiyuki Sugawa

ABSTRACT. In the present session board, the main result in [Sug] is explained, that is, Int $S(\Gamma) = T(\Gamma)$ for any Fuchsian group uniformizing a compact bordered Riemann surface with nonempty boundary, i.e., for any finitely generated, purely hyperbolic Fuchsian group of the second kind, where $S(\Gamma)$ denotes the Schwarzian derivatives of all the Γ -equivariant schlicht holomorphic functions and $T(\Gamma)$ is the (Bers model of) Teichmüller space of Γ . The paper [Sug] of the author also contains some results concerning with Int $S(\Gamma)$ for general Fuchsian groups Γ .

§1. INTRODUCTION

Let Γ be an arbitrary Fuchsian group acting on the upper half plane $\mathbb{H} = \{z \in \mathbb{C}; \operatorname{Im} z > 0\}$ and $Q(\mathbb{H}, \Gamma)$ be the space consisting all the holomorphic quadratic differntial φ on \mathbb{H} for Γ , i.e., φ is holomorphic function on \mathbb{H} satisfying a condition $\varphi \circ \gamma (\gamma')^2 = \varphi$ for $\gamma \in \Gamma$. We donote by $S(\Gamma)$ the set consisting of the Schwarzian derivative S_f of all the univalent meromorphic functions f on \mathbb{H} with $f \circ \gamma = \chi(\gamma) \circ f$ on \mathbb{H} for some group homomorphism $\chi : \Gamma \to \operatorname{M\"ob}$. Then, by the Kraus-Nehari theorem, it turns out that $S(\Gamma)$ is a bounded closed subset of the complex Banach space $B_2(\mathbb{H}, \Gamma) = \{\varphi \in Q(\mathbb{H}, \Gamma) | \|\varphi\|_{\mathbb{H}} < \infty$, where $\|\varphi\|_{\mathbb{H}} = \sup_{z \in \mathbb{H}} (2\operatorname{Im} z)^2 |\varphi(z)|$.

Furthermore, we define a subset $T(\Gamma)$ of $S(\Gamma)$ by $\{\varphi = S_f \in S(\Gamma) | f(\mathbb{H}) \text{ is a quasidisk }\}$. This subset $T(\Gamma)$ is called (the Bers model of) the Teichmüller space of the Fuchsian group Γ , and is known to be a bounded connected open subset of $B_2(\mathbb{H}, \Gamma)$.

It is an intersting topic to investigate how the Teichmüller space $T(\Gamma)$ is embedded in $S(\Gamma)$. Generally, $\overline{T(\Gamma)} \subsetneq S(\Gamma)$ holds. In fact, first Gehring has shown that $\overline{T(1)} \subsetneq S(1)$ in [7], and later the author proved in [14] that $\overline{T(\Gamma)} \subsetneqq S(\Gamma)$ for any Fuchsian group Γ of the second kind. Moreover, recently K. Matsuzaki showed in [9] the existence of certain infinitely generated Fuchsian groups Γ of the first kind such that $\overline{T(\Gamma)} \subsetneqq S(\Gamma)$. But, it is still a difficult problem to decide whether $\overline{T(\Gamma)} = S(\Gamma)$ for a finitely generated Fuchsian group Γ of the first kind.

On the other hand, Gehring has shown in [6] that $\operatorname{Int} S(1) = T(1)$. Furthermore Žuravlev showed in [17] that $T(\Gamma)$ is the zero component of $\operatorname{Int} S(\Gamma)$ for an arbitrary Fuchsian group Γ . Thus, it is naturally conjectured that $\operatorname{Int} S(\Gamma) = T(\Gamma)$ for any Γ . In this direction, Shiga proved in [13] that the above conjecture holds if Γ is finitely generated Fuchsian group of the first kind, equivalently, if $B_2(\mathbb{H}, \Gamma)$ is finite dimensional.

The main result in this article is the following

Typeset by \mathcal{AMS} -TEX

Theorem 1.

If Γ is a finitely generated, purely hyperbolic Fuchsian group of the second kind, then $T(\Gamma) = \text{Int}S(\Gamma)$.

Remark.

For a Fuchsian group Γ acting on \mathbb{H} , the following conditions are mutually equivalent:

- (i) Γ is finitely generated, purely hyperbolic and of the second kind,
- (ii) Γ is a Schottky group,
- (iii) Γ is a uniformizing group of a compact bordered Riemann surface with nonempty boundary, more presidely, Γ is the covering transformation group of a holomorphic universal covering $p : \mathbb{H} \to R$, where R is a compact Riemann surface of genus $g(\geq 0)$ with mutually closed topological disks $\overline{D}_1, \ldots, \overline{D}_m$ removed $(m \geq 1)$.

In case of (iii), we say that R is of conformal type (g, 0, m), and we should note that Γ is a free group of rank 2g + m - 1.

$\S2$. Proof of the main theorem

In the beginning, we consider a general Fuchsian group Γ of the second kind. Let $\varphi = S_f \in \operatorname{Int} S(\Gamma)$ and set $D = f(\mathbb{H})$. We denote $\chi : \Gamma \to \operatorname{Möb}$ the monodromy homorphism for f, that is, $f \circ \gamma = \chi(\gamma) \circ f$ for $\gamma \in \Gamma$. First, it is easy to see that χ is type preserving monomorphism (cf. [16] or [Sug]) and $G = \chi(\Gamma)$ is a Kleinian group acting on D.

Essentially, it is sufficient to prove that D is a quasidisk. Now, we recall a characterization of the quasidisk due to Gehring [G1]: a bounded simply connected domain D is a quasidisk if and only if there exists a constant A > 1 such that

- (1) for an arbitrary disk Δ , any two points in $D \cap \Delta$ can be connected by a path in $D \cap \Delta_A$, and
- (2) for an arbitrary disk Δ , any two points in $D \setminus \Delta_A$ can be connected by a path in $D \setminus \Delta$, where Δ_A denotes $\{|z z_0| < Ar\}$ if $\Delta = \{|z z_0| < r\}$.

First, in the line along the above characterization, we can show the following propositions.

Propostion 1.

Suppose that a Kleinian group G acts on a simply connected plane domain $D \subset \mathbb{C}$ of hyperbolic type. And suppose that D is a G-Schwarzian domain with constant $\varepsilon > 0$, the following is valid for an appropriate constant B > 1 depending only on ε : for an arbitrary $\Delta \in \mathcal{D}_B(\Omega(G))$ such that $p|_{\Delta_B}$ is injective, any two points in $\Delta \cap D$ can be joined by a path in $\Delta_B \cap D$.

References

- M. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Addison-Wesley, 1983.
- [2]. Astala and F. W. Gehring, Crickets, zippers, and the Bers universal Teichmüller space, Proc. Amer. Math. Soc. 110 (1990), 675–687.
- [3]. Bers, A nonstandard integral equation with applications to quasiconformal mappings, Acta Math. 116 (1966), 113–134.

- [4]. ■. J. Earle, I. Kra and S. L. Krushkal, Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc. 343 (1994), 927–948.
- [5]. J. Earle and S. Nag, Conformally natural reflections in Jordan curves with applications to Teichmüller spaces, in "Holomorphic Functions and Moduli II", 1986 MSRI Conference, Springer-Verlag MSRI series, Springer-Verlag, 1988.
- [6]. W. Gehring, Univalent functions and the Schwarzian derivative, Comment. Math. Helvetici 52 (1977), 561–572.
- [7]. W. Gehring, Spirals and the universal Teichmüller space, Acta Math. 141 (1978), 99–113.
- [8]. Maskit, A characterization of Schottky groups, J. d'Analyse Math. 19 (1967), 227–230.
- [9]. ■. Matsuzaki, Simply connected invariant domains of Kleinian groups not in the closures of Teichmüller spaces, Complex Variables 22 (1993), 93–100.
- [10].S Nag, The Complex Analytic Theory of Teichmüller Spaces, Wiley, 1988.
- [11].M H. A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge Univ. Press, 1939.
- [12]. C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, 1992.
- [13].H Shiga, Characterization of quasi-disks and Teichmüller spaces, Tôhoku Math. J. 37 (1985), 541-552.
- [14]. T Sugawa, On the Bers conjecture for Fuchsian groups of the second kind, J. Math. Kyoto Univ. 32 (1992), 45–52.
- [15]. To Sugawa, The Bers projection and the λ -lemma, J. Math. Kyoto Univ. **32** (1992), 701–713.
- [16]. T Sugawa, A class of norms on the spaces of Schwarzian derivatives and its applications, Proc. Japan Acad. 69, Ser. A (1993), 211-216.
- [Sug] L. Jugawa, On the space of schlicht projective structures on compact Rimann surfaces with boundary, J. Math. Kyoto Univ. (to appear).
- [17].I. V. Žuravlev, Univalent functions and Teichmüller spaces, Soviet Math. Dokl. 21 (1980), 252-255.