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§1. UNIFORM PERFECTNESS OF THE HYPERBOLIC RIEMANN SURFACE

In this talk, we shall consider only the hyperbolic Riemann surfaces R endowed
with the Poincaré metric pr(z)|dz| of constant negative curvature —4. We denote
by Dgr(p,r) the hyperbolic disk in R centered at p € R of radius r. We set o(p) =
or(p) = sup{r > 0; Dr(p,r) is simply connected } and Hr = inf,cr or(p), which
is called the injectivity radius of R.

According to [LM], R is called uniformly perfect if its injectivity radius Hp is
positive (including infinity).

Let Rr be the set of essential ring domains in R, where ring domain Ry is
essential if the inclusion map Ry < R is mi-injective. The module m(Ry) of
Ry € Rp is defined by the number m such that R is conformally equivalent to the
annulus {z € C;1 < |z] < €™}. The core curve of Ry € R, denoted by Core(Ry),
is the unique simple closed geodesic of Ry (with complete hyperbolic metric).

On R, another important continuous metric pr, called the Hahn metric, is de-
fined by

pr(2)|dz| = inf pa(2)|dz|,

where GG ranges over all simply connected domains with p € GG and z is a fixed local
coodinate around p € R. By the monotoneity of the Poincaré metric, pr > pg.

We set Mp = supg cr, m(Ro) and Kr = sup,cp ﬁ—g(p). Now we have the
following estimates. (The part (2) is due to Gotoh [G].)

Theorem 1.1.
(1) 2HR S 7T2/MR S 2HR62HR.
(2) 2 coth Hg < K < coth Hg.

Corollary 1.2.
The following conditions are mutually equivalent.
(1) R is uniformly perfect (i.e., Hr > 0),
(2) Mp < +o0,
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(3) Kpr < +o0.

We shall close this section by exhibiting a simple application of uniform perfect-
ness. Let As(R) and B2(R) be the complex Banach spaces of holomorphic quadratic
differentials ¢ on R with norms [|¢||, = [ |¢(2)|dzdy and [|¢||e = supg |¢|pr~?,

respectively. We set kp = sup{||¢]|co; ¢ € A2(R), ||¢|l1 = 1}-

Theorem 1.3.
KRR S % COth2 HR.
In particular, Ay(R) C Ba(R), if R is uniformly perfect.

Remark. Matsuzaki [M] proved this theorem in a sharper form, and with full
generality. By our result, we see that kp = O(Hr ™ ?) as Hg — 0, but, in fact,
kr = O(Hr™') as Hr — 0 by an argument using the Marden-Marglis constant
(see [M]).

Proof of Theorem 1.3. Fix an arbitrary point p in R. Let 7 : A = {|]z] <1} - R
be a holomorphic universal covering map with 7(0) = p. We denote by ¢ the pull-
back of ¢ € Ay(R) by m. Then |ppr~2|(p) = |#(0)| by the conformal invariance of
the differential forms. On the other hand, for » = tanh(o(p)), by the mean value

property, we have
1
o0 = s [[  e)dady
7TT2 |z|<r

Since 7 is injective in DA (0,0(p)), we have

foon™*19) = 6O < 15 [ [ 1pte) sy

1 1 1
< —// ol = Ll < 2 coth? Hg - g1
mr R mr s

Thus we have the assertion that ||¢|l. < %coth2 Hg - |lel- O

§2. HYPERBOLIC AND EXTREMAL LENGTHS

We denote by Si the set of all free homotopy classes of non-trivial simple closed
loops in R. The hyperbolic length £[a] of [a] € Sg is defined by

o] = inf / pr(2)]dz].

a'€la]

Let 7 : A — R be a holomorphic universal covering map of R and I" its covering
transformation group. If an element v € I" covers [a] € Sg, then we have |try| =
2 cosh /[a] (where [try| denotes the absolute value of the trace of an element of
SL(2,R) representing 7).

Thus we can easily see that

HR = inf E[Oz]

1
2 [a]eSr
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and

2cosh(2HR) = inf |tryl.
( R) ’YGF\{1}| 7|

The extremal length F[a] of [a] € Sg is defined by

o (infarega [ T(2)ld2))
Ela} = Slip ffD 7(2)2dxdy ’

where the supremum is taken over all Borel measurable conformal metrics 7 =
7(2)|dz| on R. As for this, the following result due to Jenkins-Strebel is fundamental.

Theorem 2.1 (cf.[St]). For any [a] € Sgp with Ea] > 0, there exists an integrable
holomorphic quadratic differential po (Jenkins-Strebel differential) with closed tra-
jectries homotopic to o and whose characteristic ring domain Ry € Rp satisfies
the following conditions.

o (infale[a] fa’ |S0|1/2|d2|)2
(1) Ela] = I leldzdy ’

(2) m(Ro) = B,
(3) m(R1) < m(Ry) for all Ry € Rp with Core(Ry) € [a].

Corollary 2.2.

27
inf Fla]=—.
[a]eSR [ ] Mpg

The following theorem connects amounts of the hyperbolic and extremal lengths,
and from which we can directly deduce Theorem 1.1 (1).

Theorem 2.3.

2 12
Zt[e] < Ela] < o] .
s arctan(m)
By an elementary calculation, we know that § < e” arctan(ﬁ) < 2 for any

x > 0, we have the next

Corollary 2.4.

%E[a] < Elo] < %e[a]ew.

Maskit showed the similar result that 2¢[a] < E[a] < f[a]efl®] in [Mas].
On the other hand, Matsuzaki [M] showed the next

Theorem 2.5.
Ela] < krl]al?.

Proof. Let ¢ be the holomorphic diffrential on R with ||¢g|[1 = 1 which gives an
extremal metric |pg|'/2|dz| as in Theorem 2.1. Then, for o/ ~ a,

— 1/2
Bla? < [ ool ?1dz) = [ loopn™22 - prlde] < ol [ pnldzl.

Since ' is arbitrary, we obtain that E[a] < ||@ollef[e]?. O

By combining Theorem 1.3 with the theorem above, we have the next

L LD
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Corollary 2.6. E[a] < Lcoth? Hp - £[a)?.

Remark. Of course, by a refined result of Matsuzaki [M], we shall have a better
estimate than the above.

Finally, we refer to the quasi-invariance of these amounts. Let f : R — R’ be
a K-quasiconformal homeomorphism, and set o’ = f(«). Then, it is clear that
E[a]/K < E[d] < KE[a]. Moreover it also holds that £[a]/K < {[o/] < K{[a] (see
Wolpert [W]). In particular, we know that Hr/K < Hp' < KHp and Mr/K <
Mp < KMpg.

§3. UNIFORMLY PERFECT PLANE DOMAINS

As we have seen in the previous sections, the uniform perfectness can be defined
by the intrinsic hyperbolic geometry of the surface. But, the uniform perfectness
seems to have its most importance in plane domains. The various equivalent defi-
nitions of uniform perfectness for plane domains tell us the richness of this notion.

In the sequel, let D be a subdomain of C with #(@ \ D) > 3. And, let 7 :
A — D be a holomorophic universal covering map. We set Np = ||Sz||la =
sup,ca |Sx(2)|(1 — |2]?)?, where S, = (7 /7') — $(x"/7’)? is the Schwarzian de-
rivative of m. Note that Np does not depend on the particular choice of .

By the Nehari-Kraus theorem, we know that Np < 6 if D is simply connected.
Now we state the supplementary result concerning with Np.

Theorem 3.1 (Minda [Mi]). If D is not simply connected, we have

2

2 < Np < 6coth? Hp.
2HD+ < Np £6co D

Let Ap denote a subclass of Ri consisting of all round annuli, and set Ap :=
SUPR, e, M(R0)(< Mp). Then, we can show the following result.

Theorem 3.2 (cf. McMullen [Mc]). If D C C, it holds that Mp < Ap +5log2.
In case of co € D, we have the next auxiliary result.
Theorem 3.3. If L € Mob, 3 A, py —log4/3 < Ap.

If D c C, further we define the domain constant

cp = nf dp(2)pp(2),

where 0p(z) = dist(z,0D) = inf,ecop |2 — al.

That is, c¢p is the infimum of the ratio of the Poincaré metric pp(z)|dz| to
the quasi-hyperbolic one |dz|/dp(z). We should note that dp(2)pp(z) < 1 for any
z € D, thus ¢p < 1. Concerning this, the similar result as Theorem 1.1 (2) is
verified.
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Theorem 3.4 (Minda [Mi)).

tanh H 2v/3
tanhHp _ _2V3 L
v

E{emark. The assumption that co ¢ D is essential for cp. In fact, if D = A* =
C\ A, we have 0a-(2) = |2| — 1 and pa-(2) = Izl%l’ therefore da+(2)pa~(z) =
ﬁ — 0 as z — 0o, whereas the Mobius equivalent domain A satisfies that
ca = % > 0.

Finally, we shall summalize our results.

Theorem 3.4. Let D be a plane domain of hyperbolic type. Then the following
conditions are mutually equivalent.

(1) Hp > 0,

(2) Mp < o0,

(3) Ap < 00,

(4) Np < 00,

(5) ecp >0 (if D C C).

The other features of uniformly perfect domains can be seen in [Poml| and
[Pom2].
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