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1. Definitions and notations

Let R be a hyperbolic Riemann surface, i.e. there exists a holomorphic universal
covering map f : �! R from the unit disk � onto R with the covering transforma-
tion group �; where � is a torsion-free Fuchsian group. Since the Poincar�e metric
�� = jdzj

1�jzj2
of � is invariant under the action of � � M�ob(�); it may be projected

to the metric �R = �R(z)jdzj on R; which is also called the Poincar�e (or hyperbolic)
metric of R: We denote by �R(q) the injectivity radius of R at q 2 R with respect to
the hyperbolic metric of R; and set IR = infq2R �R(q): Since the sectional curvature
of R is of negative constant �4; we may say that R is of bounded geometry if IR > 0:
And we denote by CR the set of free homotopy classes [�] of essential loops � in R:
We de�ne the hyperbolic length `R[�] of [�] by the in�mum of `R(�

0) =
R
�0 �R(z)jdzj;

where �0 ranges over all loops freely homotopic to � in R:
We remark here that 2IR = inf�2CR `R[�] = inf
2�nf1g cosh

�1(jtr
j=2):
Now we de�ne the modulus of R: A ring domain A � R is said to be essential

if the core curve of it is essential in R: The modulus m(A) of A is de�ned as the
number m such that A is conformally equivalent to the round annulus fz 2 C ; 1 <
jzj < emg: (Note that this de�nition may be di�erent from standard one.) We set
MR = infm(A); where the in�mum is taken over all essential ring domains A in R;
and call it the modulus of R: By the following estimate, we know that MR < 1 if
and only if R is of bounded geometry.

Theorem 1 (cf. [12]). Let R be a hyperbolic Riemann surface with the hyperbolic

metric �R of constant curvature �4: Then, we have the following estimate.

2IR �
�2

MR
� minf2IRe

2IR ; 2IR
2 coth2 IRg:(1)

Here, the equality occurs in the left-hand side if and only if R is a doubly connected

planar Riemann surface or IR = 0:

By a numerical calculation, we see that 2IRe
2IR > 2I2R coth

2 IR if and only if IR >
0:45752 � � � : The above estimate partly follows from the next comparison theorem,
which is an improvement of Maskit's result [7].
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Theorem 2 ([12]). For any non-contractible simple closed curve � in R; we have an

estimate:

2

�
`R[�] � ER[�] �

2

�
`R[�]e

`R[�];

where ER[�] denotes the extremal length of [�]:

In particular, when R is a plane domain, R is of bounded geometry if and only if
@R is uniformly perfect, i.e. there exists a constant 0 < c < 1 such that @R\fz; cr <
jz � aj < rg 6= ; for any a 2 @R and 0 < r < diam@R; and also so many equivalent
conditions for uniform perfectness are known. See, for example, [8], [9] and [12] and
its references.

2. Hausdorff dimension

J�arvi and Vuorinen showed in their paper [4] that a uniformly perfect set is always
of positive Hausdor� dimension (depending only on its uniform perfectness constant).
More precisely, we can formulate this as below.

Theorem 3 ([12]). Let E be a uniformly perfect set in bC and MÆ denote the supre-

mum of moduli of essential round annuli in C n E: Then we have the following esti-

mate.

H-dimE �
log 2

log(2eMÆ + 1)

 
�

log 2

MÆ + log 3

!
:(2)

We note here that MÆ � supDMD; where D ranges over all the connected compo-
nents of C n E:

3. Isoperimetric inequality

In this section, we shall consider the hyperbolic isoperimetric inequality for a hy-
perbolic Riemann surface R: Let DR denote the set of relatively compact subdomains
of R with smooth boundary. We will say that R satis�es the hyperbolic isoperimet-
ric inequality if h(R) := supD2DR

AR(D)
`R(@D)

< 1; where AR(D) is the hyperbolic areaRR
D �R(z)

2dxdy of D and `R(@D) is the hyperbolic length of @D in R:
The isoperimetric constant h(R) is important at the connection with the bottom

b(R) of the spectrum of the Laplace-Beltrami operator on R with respect to the
hyperbolic metric. In fact, it is known that 1=16h(R)2 � b(R) � 3=4h(R); where the
lefthand side is called Cheeger's inequality. And b(R) relates the exponent Æ(R) of
convergence of R: The following is known as the theorem of Elstrodt, Patterson and
Sullivan:

b(R) =

8<:
1
4

if 0 � Æ(R) � 1
2
;

Æ(R)(1� Æ(R)) if 1
2
� Æ(R) � 1:
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Fern�andez and Rodr��guez ([1] and [2]) showed that a hyperbolic plane domain of
bounded geometry satis�es the hyperbolic isoperimetric inequality. We would like to
generalize this result to the case of �nite genus. Compact hyperbolic Riemann sur-
faces are always of bounded geometry but do not satisfy the hyperbolic isoperimetric
inequality, so we should exclude these cases. A non-compact hyperbolic Riemann
surface of bounded geometry and of �nite genus g is roughly isometric to a plane
domain of bounded geometry in the sense of Kanai [5], thus we know that R satis�es
also the hyperbolic isoperimetric inequality, but, of course, it is diÆcult to obtain
explicit bound for h(R) by this method.
We now present a concrete estimate of h(R) as follows. In the proof, we employ

the idea of M. Suzuki [13] as is indicated in [1].

Theorem 4. Let R be a non-compact Riemann surface of bounded geometry and of

�nite genus g: Then the isoperimetric constant h(R) can be estimated as

h(R) � 1 +
(2g + 1)�

2IR
:

In particular, b(R) > 0 and Æ(R) < 1:

4. Application to rational maps and Kleinian groups

The uniform perfectness of the Julia set of a rational map of degree > 1 was
established by Ma~n�e-da Rocha [6] and Hinkkanen [3]. But, their proofs were done
by contradiction, so no explicit bounds for unifom perfectness were given. Here, we
shall exhibit an explicit one. For more detailed account, see [10].

Let f : bC ! bC be a rational map of degree d > 1 and Crit(f) the set of critical

points of f in the Fatou set 
 = bC n Jf : We note that #Crit(f) � 2d� 2: Put

C1 = min
v1 6=v22f(Crit(f))

d
(v1; v2); C2 = min
v2f(Crit(f))

2�
(v);

where d
 and �
 denote the hyperbolic distance and the injectivity radius in 
;
respectively. And let A1; � � � ; At be the complete system of representatives of the
cycles of Herman rings of f:We note here that, by Shishikura's theorem, 0 � t � d�2;
in particular, if d = 2 there are no Herman rings. Put C3 = minfIA1

; � � � ; IAt
g; then

we have the next

Theorem 5. For an arbitrary rational map f : bC ! bC of degree d > 1; the following

holds.

I
f
� minfC1; C2; C3g:

In particular, the Julia set Jf of f is uniformly perfect.
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Actually, the above theorem follows from a somewhat stronger result [10].

Next, we shall consider a non-elementary Kleinian groups G with non-empty region
of discontinuity 
(G): For simplicity, we assume that G is torsion-free. Then, the
quotient space R = 
(G)=G becomes a (countable disjoint union of) hyperbolic
Riemann surface(s). We set L�

R = inf[�] `R[�]; where the in�mum is taken over all
[�] 2 CR with `R[�] > 0; and R will be called of Lehner type if L�

R > 0:
It is known that G is �nitely generated then the limit set �(G) is uniformly perfect

(see, [9]). We can generalize this to the following form. (For more general and
stronger statement, we refer to [11].)

Theorem 6. If a torsion-free, non-elementary Kleinian group G has the quotient


(G)=G of Lehner type, then the limit set �(G) is uniformly perfect. Moreover,

2I
(G) � L�

(G)=G:
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