In this talk, we present applications of holomorphic motions to the quasiconformal extension of univalent functions. Compare the following two results.

Theorem A (Krzyż [2]). Let ω be an analytic function on the unit disk Δ with $|\omega'(z)| \leq k$, where $0 \leq k < 1$ is a constant. Then the function $f(z) = z + \omega(1/z)$ on the outside of Δ can be extended to a k-quasiconformal automorphism of the Riemann sphere.

Theorem B (Fait, Krzyż and Zygmunt [1, Theorem 2']). Let ω be an analytic function on the unit disk Δ with $|\omega'(z)| \leq k$, where $0 \leq k < 1$ is a constant. Then the function $f(z) = z + \omega(z)$ on Δ can be extended to a k'-quasiconformal automorphism of the Riemann sphere, where $k' = k/(2 - k)$. In fact, this can be easily obtained as a corollary of the following result, which is one of our results presented here.

Theorem. Let k be a constant in $[0,1)$. For a normalized analytic function $f(z) = z + a_2 z^2 + \ldots$ on the unit disk Δ, let $p(z)$ represent one of the quantities $zf'(z)/f(z)$, $1 + zf''(z)/f'(z)$ or $f''(z)$. If $p(\Delta) \subset \{w \in \mathbb{C}; |w - (1 + k^2)/(1 - k^2)| \leq 2k/(1 - k^2)\}$, the function f can be extended to a k'-quasiconformal automorphism of the Riemann sphere.

In the case that $p(z) = zf'(z)/f(z)$ the above result is best possible as the function $p(z) = (1 + k z^2)/(1 - k z^2)$ indicates.

The above theorem can be shown by means of the optimal λ-lemma first proved by Słodkowski [3]. We will present a general principle which enables us to deduce quasiconformal extension criteria from only univalence criteria.

References

Department of Mathematics, Kyoto University, 606-8502 Kyoto, Japan

E-mail address: sugawa@kusm.kyoto-u.ac.jp