GROWTH AND COEFFICIENT ESTIMATES FOR UNIFORMLY LOCALLY UNIVALENT FUNCTIONS ON THE UNIT DISK

YONG CHAN KIM AND TOSHIYUKI SUGAWA

The present article is a summary of our paper [4] which will appear somewhere.

We will call a holomorphic function f on the unit disk \mathbb{D} uniformly locally univalent if f is univalent on each hyperbolic disk $D(a, \rho) = \{z \in \mathbb{D}; |\frac{z-a}{1-\bar{a}z}| < \tanh \rho\}$ with radius ρ and center $a \in \mathbb{D}$ for a positive constant ρ . It is well-known (cf. [7]) that a holomorphic function f on the unit disk is uniformly locally univalent if and only if the pre-Schwarzian derivative (or nonlinearity) $T_f = f''/f'$ of f is hyperbolically bounded, i.e., the norm

$$||T_f|| = \sup_{z \in \mathbb{D}} (1 - |z|^2) |T_f(z)|$$

is finite. This quantity can be regarded as the Bloch norm of the function $\log f'$.

Because T_f is invariant under the post-composition by a non-constant linear function, we may assume that a holomorphic function f on the unit disk is normalized so that f(0) = 0 and f'(0) = 1. We denote by \mathcal{A} the set of such normalized holomorphic functions on the unit disk. And we denote by \mathcal{B} the set of normalized uniformly locally univalent functions: $\mathcal{B} = \{f \in \mathcal{A}; ||T_f|| < \infty\}$. The space \mathcal{B} has a structure of non-separable complex Banach space under the Hornich operation ([6]). Also this space is important in connection with the Teichmüller theory (cf. [1] and [9]). The amount of the norm $||T_f||$ is thought to be strongly reflected by some geometric or analytic properties of the function f, we will concern this quantity in the following.

For a non-negative real number λ we set

$$\mathcal{B}(\lambda) = \{ f \in \mathcal{A}; \|T_f\| \le 2\lambda \},\$$

here the number 2 is due to some technical reason.

In the class $\mathcal{B}(\lambda)$ for $0 \leq \lambda < \infty$ the function

$$F_{\lambda}(z) = \int_{0}^{z} \left(\frac{1+t}{1-t}\right)^{\lambda} dt$$

is extremal as we shall see later. We note that F_{λ} is univalent if and only if $0 \leq \lambda \leq 1$. The following elementary fact is important for our argument below.

Theorem 1 (Distortion Theorem). Let λ be a non-negative real number. For an $f \in \mathcal{B}(\lambda)$ it holds that

$$F'_{\lambda}(-|z|) = \left(\frac{1-|z|}{1+|z|}\right)^{\lambda} \le |f'(z)| \le \left(\frac{1+|z|}{1-|z|}\right)^{\lambda} = F'_{\lambda}(|z|), \quad and$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 30C45, 30C50; Secondary 30C80.

Key words and phrases. pre-Schwarzian derivative, uniformly locally univalent, growth estimate, coefficient estimate.

 $|f(z)| \le F_{\lambda}(|z|)$

in the unit disk. Furthermore, if f is univalent then

$$-F_{\lambda}(-|z|) \le |f(z)| \le F_{\lambda}(|z|).$$

If the equality occurs in any of the above inequalities at some point $z_0 \neq 0$, then f must be a rotation of F_{λ} , i.e., $f(z) = \overline{\mu} F_{\lambda}(\mu z)$ for a unimodular constant μ .

Corollary 2. For $\lambda > 1$ any $f \in \mathcal{B}(\lambda)$ satisfies the growth condition

$$f(z) = O(1 - |z|)^{1-1}$$

as $|z| \to 1$. On the other hand, for $\lambda < 1$, a function $f \in \mathcal{B}(\lambda)$ is always bounded with a uniform bound $F_{\lambda}(1)$. Furthermore, if f is univalent, then $f(\mathbb{D})$ contains the disk $\{|z| < -F_{\lambda}(-1)\}$. This constant $-F_{\lambda}(-1)$ is best possible for $0 \le \lambda \le 1$.

We note that for $\lambda \leq 1/2$ the function $f \in \mathcal{B}(\lambda)$ must be univalent (cf. [2], [3]).

In this article, we will present several consequences from the above estimates and mention explicit norm estimates for various classes of univalent functions (for the proofs, see [4]). The following are sample theorems.

Theorem 3. Let $0 \leq \lambda < 1$. Then any function $f \in \mathcal{B}(\lambda)$ is Hölder continuous of exponent $1 - \lambda$ on the unit disk.

Theorem 4. Suppose $f \in \mathcal{B}(\lambda)$ is univalent. If $\lambda < 1$ then $f \in H^{\infty}$. If $\lambda > 1$ then $f \in H^p$ for any 0 . $If <math>\lambda = 1$ then $f \in BMOA$.

Note that $H^{\infty} \subset BMOA \subset \bigcap_{0 .$ $Let <math>I_p(r, f)$ denote the integral mean of f with exponent $p \in \mathbb{R}$:

$$I_p(r,f) = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta.$$

And, for $\lambda > 0$, we set

$$\alpha(\lambda) = \frac{\sqrt{1+4\lambda^2}-1}{2}.$$

Note that

$$\frac{\lambda^2}{\lambda+1} < \alpha(\lambda) < \min\left\{\lambda^2, \frac{2\lambda^2}{2\lambda+1}\right\} \le \min\{\lambda^2, \lambda\}.$$

Then we have the following

Theorem 5. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ be in $\mathcal{B}(\lambda)$. Then, for any $\varepsilon > 0$ and a real number p, we have $I_p(r, f') = O(1-r)^{-\alpha(|p|\lambda)-\varepsilon}$, in particular, $a_n = O(n^{\alpha(\lambda)-1+\varepsilon})$.

Note that the extremal function F_{λ} has coefficients whose growth order is equivalent to $n^{\lambda-2}$.

The following is due to S. Yamashita. (The case of strongly starlike functions was first shown by [5].)

Theorem A (Yamashita [8]). Let $0 \le \alpha < 1$ and $f \in S$. If f is starlike of order α , i.e., $\operatorname{Re}(zf'(z)/f(z)) > \alpha$, then $||T_f|| \le 6 - 4\alpha$. If f is convex of order α , i.e., $\operatorname{Re}(1 + zf''(z)/f'(z)) > \alpha$, then $||T_f|| \le 4(1 - \alpha)$. If f is strongly starlike of order α , i.e., $\arg(zf'(z)/f(z)) < \pi\alpha/2$, then $||T_f|| \le M(\alpha) + 2\alpha$, where $M(\alpha)$ is a specified constant depending only on α satisfying $2\alpha < M(\alpha) < 2\alpha(1 + \alpha)$.

All of the bounds are sharp.

Finally we state general and useful principles for estimation of the norm of T_f . The following one always generates a sharp result for fixed g. The idea is due to Littlewood.

Theorem 6 (Subordination Principle I). Let $g \in \mathcal{B}$ be given. For $f \in \mathcal{A}$, if f' is subordinate to g' then we have $||T_f|| \leq ||T_g||$. In particular, f is uniformly locally univalent on the unit disk.

We can also show the next result.

Theorem 7 (Subordination Principle II). Let $g \in \mathcal{B}$ be given. For $f \in \mathcal{A}$, if zf'(z)/f(z) is subordinate to g' then we have

$$\|T_f\| \le \sup_{z \in \mathbb{D}} (1 - |z|^2) \left(\left| \frac{g'(z) - 1}{z} \right| + |T_g(z)| \right) \\\le \sup_{z \in \mathbb{D}} (1 - |z|^2) \left| \frac{g'(z) - 1}{z} \right| + \|T_g\|.$$

References

- K. Astala and F. W. Gehring, Injectivity, the BMO norm and the universal Teichmüller space, J. Analyse Math. 46 (1986), 16-57.
- J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23–43.
- J. Becker and Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math. 354 (1984), 74–94.
- 4. Y. C. Kim and T. Sugawa, Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, preprint, 1998.
- 5. T. Sugawa, On the norm of the pre-Schwarzian derivatives of strongly starlike functions, to appear in Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 1998.
- S. Yamashita, Banach spaces of locally schlicht functions with the Hornich operations, Manuscripta Math. 16 (1975), 261-275.
- 7. _____, Almost locally univalent functions, Monatsh. Math. 81 (1976), 235–240.
- 8. ____, Norm estimates for function starlike or convex of order alpha, to appear in Hokkaido Math. J., 1998.
- 9. I. V. Zhuravlev, Model of the universal Teichmüller space, Siberian Math. J. 27 (1986), 691-697.

DEPARTMENT OF MATHEMATICS, YEUNGNAM UNIVERSITY, 214-1 DAEDONG, GYONGSAN 712-749, KOREA

E-mail address: kimyc@ynucc.yeungnam.ac.kr

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY, 606-8502 KYOTO, JAPAN *E-mail address:* sugawa@kusm.kyoto-u.ac.jp