GROWTH AND COEFFICIENT ESTIMATES FOR UNIFORMLY
LOCALY UNIVALENT FUNCTIONS ON THE UNIT DISK

YONG CHAN KIM AND TOSHIYUKI SUGAWA

The present article is a summary of our paper [4] which will appear somewhere.
We will call a holomorphic function \(f \) on the unit disk \(\mathbb{D} \) uniformly locally univalent if \(f \) is univalent on each hyperbolic disk \(D(a, \rho) = \{ z \in \mathbb{D}; \left| \frac{z-a}{1-\overline{a}z} \right| < \tanh \rho \} \) with radius \(\rho \) and center \(a \in \mathbb{D} \) for a positive constant \(\rho \). It is well-known (cf. [7]) that a holomorphic function \(f \) on the unit disk is uniformly locally univalent if and only if the pre-Schwarzian derivative (or nonlinearity) \(T_f = f''/f' \) of \(f \) is hyperbolically bounded, i.e., the norm
\[
\|T_f\| = \sup_{z \in \mathbb{D}} (1 - |z|^2) |T_f(z)|
\]
is finite. This quantity can be regarded as the Bloch norm of the function \(\log f' \).

Because \(T_f \) is invariant under the post-composition by a non-constant linear function, we may assume that a holomorphic function \(f \) on the unit disk is normalized so that \(f(0) = 0 \) and \(f'(0) = 1 \). We denote by \(\mathcal{A} \) the set of such normalized holomorphic functions on the unit disk. And we denote by \(\mathcal{B} \) the set of normalized uniformly locally univalent functions: \(\mathcal{B} = \{ f \in \mathcal{A}; \|T_f\| < \infty \} \). The space \(\mathcal{B} \) has a structure of non-separable complex Banach space under the Hornich operation ([6]). Also this space is important in connection with the Teichmüller theory (cf. [1] and [9]). The amount of the norm \(\|T_f\| \) is thought to be strongly reflected by some geometric or analytic properties of the function \(f \), we will concern this quantity in the following.

For a non-negative real number \(\lambda \) we set
\[
\mathcal{B}(\lambda) = \{ f \in \mathcal{A}; \|T_f\| \leq 2\lambda \},
\]
here the number 2 is due to some technical reason.

In the class \(\mathcal{B}(\lambda) \) for \(0 \leq \lambda < \infty \) the function
\[
F_\lambda(z) = \int_0^z \left(\frac{1+t}{1-t} \right)^\lambda \, dt
\]
is extremal as we shall see later. We note that \(F_\lambda \) is univalent if and only if \(0 \leq \lambda \leq 1 \).
The following elementary fact is important for our argument below.

Theorem 1 (Distortion Theorem). Let \(\lambda \) be a non-negative real number. For an \(f \in \mathcal{B}(\lambda) \) it holds that
\[
F'_\lambda(|z|) = \left(\frac{1-|z|}{1+|z|} \right)^\lambda \leq |f'(z)| \leq \left(\frac{1+|z|}{1-|z|} \right)^\lambda = F'_\lambda(|z|),
\]
and

\[1991 \text{ Mathematics Subject Classification.} \text{ Primary 30C45, 30C50; Secondary 30C80.}

\textit{Key words and phrases.} \text{pre-Schwarzian derivative, uniformly locally univalent, growth estimate, coefficient estimate.}
\[|f(z)| \leq F_\lambda(|z|) \]

in the unit disk. Furthermore, if \(f \) is univalent then
\[-F_\lambda(|z|) \leq |f(z)| \leq F_\lambda(|z|). \]

If the equality occurs in any of the above inequalities at some point \(z_0 \neq 0 \), then \(f \) must be a rotation of \(F_\lambda \), i.e., \(f(z) = \mu F_\lambda(\mu z) \) for a unimodular constant \(\mu \).

Corollary 2. For \(\lambda > 1 \) any \(f \in \mathcal{B}(\lambda) \) satisfies the growth condition
\[f(z) = O\left(1 - |z|\right)^{1-\lambda} \]
as \(|z| \to 1 \). On the other hand, for \(\lambda < 1 \), a function \(f \in \mathcal{B}(\lambda) \) is always bounded with a uniform bound \(F_\lambda(1) \). Furthermore, if \(f \) is univalent, then \(f(\mathbb{D}) \) contains the disk \(\{|z| < -F_\lambda(-1)\} \). This constant \(-F_\lambda(-1)\) is best possible for \(0 \leq \lambda \leq 1 \).

We note that for \(\lambda \leq 1/2 \) the function \(f \in \mathcal{B}(\lambda) \) must be univalent (cf. [2], [3]).

In this article, we will present several consequences from the above estimates and mention explicit norm estimates for various classes of univalent functions (for the proofs, see [4]). The following are sample theorems.

Theorem 3. Let \(0 \leq \lambda < 1 \). Then any function \(f \in \mathcal{B}(\lambda) \) is Hölder continuous of exponent \(1 - \lambda \) on the unit disk.

Theorem 4. Suppose \(f \in \mathcal{B}(\lambda) \) is univalent.
If \(\lambda < 1 \) then \(f \in H^\infty \).
If \(\lambda > 1 \) then \(f \in H^p \) for any \(0 < p < 1/(\lambda - 1) \).
If \(\lambda = 1 \) then \(f \in \text{BMOA} \).

Note that \(H^\infty \subset \text{BMOA} \subset \cap_{0 < p < \infty} H^p \).
Let \(I_p(r, f) \) denote the integral mean of \(f \) with exponent \(p \in \mathbb{R} \):
\[I_p(r, f) = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta. \]

And, for \(\lambda > 0 \), we set
\[\alpha(\lambda) = \frac{\sqrt{1 + 4\lambda^2} - 1}{2}. \]

Note that
\[\frac{\lambda^2}{\lambda + 1} < \alpha(\lambda) \leq \min\{\lambda^2, \frac{2\lambda^2}{2\lambda + 1}\} \leq \min\{\lambda^2, \lambda\}. \]

Then we have the following

Theorem 5. Let \(f(z) = z + a_2z^2 + a_3z^3 + \cdots \) be in \(\mathcal{B}(\lambda) \). Then, for any \(\varepsilon > 0 \) and a real number \(p \), we have \(I_p(r, f^\prime) = O\left(1 - r\right)^{-\alpha(p\lambda^{-1} - \varepsilon)} \); in particular, \(a_n = O(n^{\alpha(\lambda) - 1 + \varepsilon}) \).

Note that the extremal function \(F_\lambda \) has coefficients whose growth order is equivalent to \(r^{\lambda - 2} \).

The following is due to S. Yamashita. (The case of strongly starlike functions was first shown by [5].)

Theorem A (Yamashita [8]). Let \(0 \leq \alpha < 1 \) and \(f \in S \).
If \(f \) is starlike of order \(\alpha \), i.e., \(\text{Re}(z f'(z)/f(z)) > \alpha \), then \(\|T_f\| \leq 6 - 4\alpha. \)
If f is convex of order α, i.e., $\text{Re}(1 +zf''(z)/f'(z)) > \alpha$, then $\|T_f\| \leq 4(1 - \alpha)$.

If f is strongly starlike of order α, i.e., $\text{arg}(zf'(z)/f(z)) < \pi\alpha/2$, then $\|T_f\| \leq M(\alpha) + 2\alpha$, where $M(\alpha)$ is a specified constant depending only on α satisfying $2\alpha < M(\alpha) < 2\alpha(1 + \alpha)$.

All of the bounds are sharp.

Finally we state general and useful principles for estimation of the norm of T_f. The following one always generates a sharp result for fixed g. The idea is due to Littlewood.

Theorem 6 (Subordination Principle I). Let $g \in \mathcal{B}$ be given. For $f \in \mathcal{A}$, if f' is subordinate to g' then we have $\|T_f\| \leq \|T_g\|$. In particular, f is uniformly locally univalent on the unit disk.

We can also show the next result.

Theorem 7 (Subordination Principle II). Let $g \in \mathcal{B}$ be given. For $f \in \mathcal{A}$, if $zf'(z)/f(z)$ is subordinate to g' then we have

$$
\|T_f\| \leq \sup_{z \in \mathbb{D}} (1 - |z|^p) \left(\left| \frac{g'(z)}{z} - 1 \right| + \|T_g(z)\| \right)
$$

$$
\leq \sup_{z \in \mathbb{D}} (1 - |z|^p) \left| \frac{g'(z)}{z} - 1 \right| + \|T_g\|.
$$

References

Department of Mathematics, Yeungnam University, 214-1 Daedong, Gyongsan 712-749, Korea

E-mail address: kimyc@ymuc.ymenu.ac.kr

Department of Mathematics, Kyoto University, 606-8502 Kyoto, Japan

E-mail address: sugawa@kms.kyoto-u.ac.jp