GROWTH AND COEFFICIENT ESTIMATES FOR UNIFORMLY
LOCALLY UNIVALENT FUNCTIONS ON THE UNIT DISK
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The present article is a summary of our paper [4] which will appear somewhere.

We will call a holomorphic function f on the unit disk D uniformly locally univalent if
f is univalent on each hyperbolic disk D(a,p) = {z € D;|{=%| < tanh p} with radius p
and center a € D for a positive constant p. It is well-known (cf. [7]) that a holomorphic
function f on the unit disk is uniformly locally univalent if and only if the pre-Schwarzian

derivative (or nonlinearity) Ty = f”/f'" of f is hyperbolically bounded, i.e., the norm
1Ty = sup(1 — |2[*)|T5(2)|
z€D

is finite. This quantity can be regarded as the Bloch norm of the function log f'.

Because T is invariant under the post-composition by a non-constant linear function,
we may assume that a holomorphic function f on the unit disk is normalized so that
f(0) =0 and f'(0) = 1. We denote by A the set of such normalized holomorphic functions
on the unit disk. And we denote by B the set of normalized uniformly locally univalent
functions: B = {f € A;||Ty|| < oo}. The space B has a structure of non-separable
complex Banach space under the Hornich operation ([6]). Also this space is important in
connection with the Teichmiiller theory (cf. [1] and [9]). The amount of the norm ||T%|| is
thought to be strongly reflected by some geometric or analytic properties of the function
f, we will concern this quantity in the following.

For a non-negative real number \ we set

B(A) = {f € ATyl <273,

here the number 2 is due to some technical reason.
In the class B(\) for 0 < A < oo the function

Fy(z) = /0 (g)Adt

is extremal as we shall see later. We note that F) is univalent if and only if 0 < A < 1.
The following elementary fact is important for our argument below.

Theorem 1 (Distortion Theorem). Let A\ be a non-negative real number. For an f €
B(A) it holds that

E\(—]z]) = (1 — |Z|>A < |f'(2)] < <1 i |Z|>A = Fl(z]), and

1+ |z| 1—|z|
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[f(2)] < Fx(]=])

wn the unit disk. Furthermore, if f is univalent then
—Fx(=1z]) < [f(2)] < Fa([z)).

If the equality occurs in any of the above inequalities at some point zg # 0, then f must
be a rotation of Fy, i.e., f(z) = pFx\(pz) for a unimodular constant .

Corollary 2. For A > 1 any f € B()\) satisfies the growth condition
fz) =0(1 — [z

as |z| — 1. On the other hand, for X\ < 1, a function f € B(\) is always bounded
with a uniform bound F\(1). Furthermore, if f is univalent, then f(D) contains the disk
{|z| < =Fx(=1)}. This constant —F(—1) is best possible for 0 < XA < 1.

We note that for A < 1/2 the function f € B(A) must be univalent (cf. [2], [3]).

In this article, we will present several consequences from the above estimates and men-
tion explicit norm estimates for various classes of univalent functions (for the proofs, see
[4]). The following are sample theorems.

Theorem 3. Let 0 < A < 1. Then any function f € B(X) is Hélder continuous of
exponent 1 — X on the unit disk.

Theorem 4. Suppose [ € B(A) is univalent.
If A <1 then f € H*®.
If A\ > 1 then f € HP for any 0 <p < 1/(A—1).
IfA=1 then f € BUOA.

Note that H* C BMOA C Ny<p<ooH”.
Let I,(r, f) denote the integral mean of f with exponent p € R:
1 2w ;
L) = 5= [ 1.

And, for A > 0, we set

V9I+4X? -1

a(N) = 5
Note that
ax < a()) < min{ \? 2X° < min{)\? A}
T a min W] < min{\’, \}.

Then we have the following

Theorem 5. Let f(2) = z+agz? +azz® +- -+ be in B()\). Then, for any ¢ > 0 and a real
number p, we have L,(r, f') = O(1 — r)=PN=¢ "in particular, a, = O(n*MN=1+¢).

Note that the extremal function F) has coefficients whose growth order is equivalent to
A—2
n 2.

The following is due to S. Yamashita. (The case of strongly starlike functions was first
shown by [5].)

Theorem A (Yamashita [8]). Let 0 <a <1 and f € S.
If f is starlike of order v, i.e., Re(zf'(2)/f(2)) > «, then ||T}|| < 6 — 4a.



If f is convex of order o, i.e., Re(1+ 2f"(2)/f'(2)) > «, then ||Tf|| < 4(1 — o).

If f is strongly starlike of order «, i.e., arg(zf'(2)/f(2)) < ma/2, then ||Ty|| < M(a) +
2a, where M(«) is a specified constant depending only on « satisfying 2o < M(a) <
20(1 + ).

All of the bounds are sharp.

Finally we state general and useful principles for estimation of the norm of 7. The
following one always generates a sharp result for fixed g. The idea is due to Littlewood.

Theorem 6 (Subordination Principle I). Let g € B be given. For f € A, if f' is subor-
dinate to g' then we have ||T¢|| < ||T,||. In particular, f is uniformly locally univalent on
the unit disk.

We can also show the next result.

Theorem 7 (Subordination Principle II). Let g € B be given. For f € A, if zf'(2)/f(2)
is subordinate to g' then we have

g(z)—1
17511 < sup(1 — =2 ( IE =1 7o)
zeD z
J(z)—1
< sup(1 = |2 L\ T,
2€D z
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