A PROPERTY OF FUKUI'S EXTREMAL FUNCTION

TOSHIYUKI SUGAWA

1. INTRODUCTION.

Let p be a positive integer and A, denote the class of analytic functions f in
the unit disk A with Taylor expansions of the form: f(z) = 22 + a,412?7" + -+
For a constant o € [0,1], a function f in A, is called p-valently starlike of order a

(respectively, p-valently convex of order «), if f satisfies the condition ReZTf/ > ain

A (respectively, Re(1+ Z]J:,”) > ain A). We denote by S7(a) and K, (a) the class of p-
valently starlike and convex functions of order «, respectively. The Marx-Strokhacker
theorem asserts that K7(0) C Si(3). Later, several authors have made efforts toward
the generalization of this to the case for general p. At least, the following result has

been proved by S. Fukui and M. Nunokawa.

Theorem 1.1. For any p > 2, it holds that K,(0) C S;(0).

Recently, S. Fukui proved that there exists no positive constant o > 0 such that
K,(0) C S;(a). In fact, he introduced a function f € K,(0) which is extremal in some

sense, and satisfies that inf,c A Re%i‘;) = 0 (for a precise definition of f, see Section
2). Further, he exhibited that his function f can be written as f(z) = ﬁh(z)

with a polynomial h of degree p, and he showed a remarkable property that the real
part of h(e) is a constant multiple of (1 — cosf)? at least in case p = 2,3,4,5.

In this note, we review Fukui’s extremal function and give a complete (self-contained)
proof for the next theorem, which is essentially equivalent to a classical result (Lemma
3.1) concerned with trigonometric series.

Theorem 1.2. For any integer p > 2, Fukui’s extremal function f(z) = #h(z)
satisfies that
Reh(e”) = C,(1 — cosb)?,

_ op(h? _ p(p—1)--2-1
where C), = 21’(2—1))! = @p-1)2p=3)-31"

We should note that the above theorem was proved also by Yamakawa and Nunokawa,
independently.



2. AN EXTREMALITY OF FUKUI’S FUNCTION.

For an integer p > 2, S. Fukui considered a function f in A, which satisfies the
differential equation:

pt

fl(z) = -1

As is easily seen, the function f enjoies the property:

zf"(z) RER:
e TP

in A, thus it follows that f € K,(0). Here, we set h(z) = (Z_l)zpf(z), then we have

2P

W) = Co Y o) 4 o — pte - = )
_p, pz+1)
Tz + 2(z — l)h(z)'

Thus, A is an analytic solution of the differential equation

|
(2.1) () +p- 5 Tz

— Zh(z) = p.

Let h(z) = 302, A,2" be the power series expansion, then from (2.1) it follows that

Z nA,z" +p (1 +2 Z z”) Z A, zZ"

n=0 n=1 n=0
0 o] n—1
— Z(TL + p)Anz" + 2p Z (Z Ak) P P,
n=0 n=1 \k=0

thus the coefficients should satisfy A; = 1 and
n—1
(2.2) (n+p)A, +2p> Ay =0 (n>1).

k=0

From (2.2) with n = 1, we see that A; = —1% If n > 2, subtracting (n+p—1)A,_1+
2p =2 Ay, = 0 from (2.2), we have

(n+pA,+(p—n+1)A, =0
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Therefore, we obtain that A, = 0 for n > p and

— 1 — 2 -1
A = (ol ((pmnE2) o p=1)
p+n p+n—1 p+2

2PP—1)(p—n+1)

BRI P By
2y
(23) S

for 1 < n < p. In particular, h(z) is a polynomial of degree p. First note that h(1) =0

by an equivalent relation of (2.1):
(2.4) 2(1 — z)h'(z) + p(1 + 2)h(2) + p(z — 1) = 0.
Differentiation of (2.4) yields that

(2.5) Z2(L=2)h"(2)+(p+ 1+ (p—2)2)h'(2) + ph(z) + p =0,
in particular, A'(1) = —2}%1. Further differentiating (2.5), we obtain

21— 2)"(2) + (p+ 2+ (p— 4)2)"(2) + (2p — 2/ (2) = 0,

and A"(1) + h'(1) = 0, especially. Now we sum up the above result as

p
[(#0).

A1) =0, R(1) = =h"(1) =~

Here we note that
2f'(2)  z-p2t p

f(z) ~ (z—1p2f(z) " h(z)

e > 0. Hence, we obtain that inf,c A Re
fact by showing the following elementary

so Theorem 1.1 implies that Re .2

Lemma 2.1. Suppose that h(z) is analytic near z = 1 and that

h(1) =0, K(1)#0.

Then we have
1 —Re[h/ (1) + R"(1)]
<
pre N e 2)n(1)]2

w'(0) +iv'(0
u"(0) + " (0

ie”h' ("), and

(

Proof. We write h(e®) = u(6) + 1v(). Then we have
)=
) ezeh/(ez ) o eZiOhII(eiO)‘
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Letting 0 = 0, we have u(0) = v(0) = 0,

W(0)2 + /(02 = |[F(1)]?, and
u"(0) = —Re[k/(1) + K'(1)].

Thus, by de I’Hospital’s theorem, we see that

o .. . Reh(z)
hnimfRes 7y = il e
< lim M = lim & = lim w(0)
— =0 [R(e?)P -0 u(0)? +u(0)? o—0 2(w(8)u(f) + v'(0)v(0))
| " (6)
2 0 T (8)u(6) + w(0)2 + v (0)0(8) + v (0)2
_w(0) —Re[W(1) + H(1)]
2(w/(0)2 +v'(0)2) 2|h(1)[?

3. PROOF OF THEOREM 1.2.
This section devoted to a proof of Theorem 1.2. We remark that this theorem
produces a more direct proof of the extremality of Fukui’s function: inf,c 5 Re; 2~ = 0.

h(z)
First, we prepare the next

Lemma 3.1. For a positive integer p,

g 2
(3.1) sin*? 5= ooty (p 2p ) cosnb,

n=0 —-n
where € = 6y, t.e., e =1 if n =0 and € = 0 otherwise.
However this is a known result, we include a proof for convenience of the reader.

. : . . 24 . . . . 3 4 : . 0 _
Proof. Since the function sin? ¢ is even, its Fourier expansion takes a form: sin? g
2107,(;:[) Bn COS ne, here

1 2~ 0
B, =— / sin“? — cos nfdo
2¢m Jo 2
forn =0,1,2,--- . Now we introduce an auxiliary double sequence

27 ok 9
T— sin“® — cos nddo
’ Jo 2
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for k,n =0,1,2,--- . Then, in order to prove the assertion, it suffices to show that

2k
m(—1)n21 -2 ( ) if 0 <n <k,
Qpn = k—n
0 it k <n.
Using a descending formula:
27 0 0
T / sin?-1 =~ (sin — COS nG) df
’ Jo 2 2
1 gp2m 0 1 1
=3 /o sin?~1 2 (sin(n + 5)9 — sin(n — 2)9) df
L7 o0
= Z/o s [(cos nf — cos(n + 1)0) — (cos(n — 1) — cosnd)|db
1

= 1(20%71,71 — Og—1n+1 — akfl,nfl)a

we can show the above equation by induction with respect to k. [

Now we return to Fukui’s extremal function f. By (2.3), we have

P P 2 !2
(p) o

hz)=> A,z =1+ Z(—l)"(

n=0 n=1 p + ’fl)'(p - n)‘
P n2
— Z(_l)an—E (p) Zn.

n=0 (p + n)'(p - n)'
In particular, we obtain
(32) Re(e®) = 3o(— 1zt ) ’
3.2 eh(e) = —1)y*2+° cos nb.

n=0 (p + n)'(p - n)'

On the other hand, we have

A ,
(1 —cosf)? = (2 sin” 5) = (-1 2t er (p 2—pn> cosnd

by (3.1), and _
l—e—p 2p _ ol—e¢ (p')z (2p)' _ ol—c¢ (p‘)z
2 (P—”> e -l el

hence now Theorem 1.2 is proved.



