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1. Introduction.

Let p be a positive integer and Ap denote the class of analytic functions f in
the unit disk � with Taylor expansions of the form: f (z) = zp + ap+1z

p+1 + � � � :
For a constant � 2 [0; 1]; a function f in Ap is called p-valently starlike of order �

(respectively, p-valently convex of order �), if f satis�es the condition Re zf
0

f
� � in

� (respectively, Re(1+ zf 00

f 0
) � � in �): We denote by S�p(�) and Kp(�) the class of p-

valently starlike and convex functions of order �; respectively. The Marx-Strokh�acker
theorem asserts that K1(0) � S�1(

1
2
): Later, several authors have made e�orts toward

the generalization of this to the case for general p: At least, the following result has
been proved by S. Fukui and M. Nunokawa.

Theorem 1.1. For any p � 2; it holds that Kp(0) � S�p(0):

Recently, S. Fukui proved that there exists no positive constant � > 0 such that
Kp(0) � S�p(�): In fact, he introduced a function f 2 Kp(0) which is extremal in some

sense, and satis�es that infz2� Rezf
0(z)

f(z)
= 0 (for a precise de�nition of f; see Section

2). Further, he exhibited that his function f can be written as f(z) = zp

(z�1)2p
h(z)

with a polynomial h of degree p; and he showed a remarkable property that the real
part of h(ei�) is a constant multiple of (1� cos �)p at least in case p = 2; 3; 4; 5:
In this note, we review Fukui's extremal function and give a complete (self-contained)

proof for the next theorem, which is essentially equivalent to a classical result (Lemma
3.1) concerned with trigonometric series.

Theorem 1.2. For any integer p � 2; Fukui's extremal function f(z) = zp

(z�1)2ph(z)

satis�es that

Reh(ei�) = Cp(1� cos �)p;

where Cp = 2p (p!)
2

(2p)!
= p(p�1)���2�1

(2p�1)(2p�3)���3�1
:

We should note that the above theorem was proved also by Yamakawa and Nunokawa,
independently.
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2. An extremality of Fukui's function.

For an integer p � 2; S. Fukui considered a function f in Ap which satis�es the
di�erential equation:

f 0(z) =
pzp�1

(z � 1)2p
:

As is easily seen, the function f enjoies the property:

1 +
zf 00(z)

f 0(z)
= p �

1 + z

1� z

in �; thus it follows that f 2 Kp(0): Here, we set h(z) =
(z�1)2p

zp
f(z); then we have

h0(z) =
(z � 1)2p

zp
f 0(z) + f2pz � p(z � 1)g

(z � 1)2p�1

zp+1
f(z)

=
p

z
+
p(z + 1)

z(z � 1)
h(z):

Thus, h is an analytic solution of the di�erential equation

zh0(z) + p �
1 + z

1� z
h(z) = p:(2.1)

Let h(z) =
P
1

n=0Anz
n be the power series expansion, then from (2.1) it follows that

1X
n=0

nAnz
n + p

 
1 + 2

1X
n=1

zn
!

1X
n=0

Anz
n

=
1X
n=0

(n+ p)Anz
n + 2p

1X
n=1

 
n�1X
k=0

Ak

!
zn = p;

thus the coe�cients should satisfy A0 = 1 and

(n+ p)An + 2p
n�1X
k=0

Ak = 0 (n � 1):(2.2)

From (2.2) with n = 1; we see that A1 = � 2p
p+1

: If n � 2; subtracting (n+p�1)An�1+

2p
Pn�2

k=0 Ak = 0 from (2.2), we have

(n+ p)An + (p� n+ 1)An�1 = 0:
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Therefore, we obtain that An = 0 for n > p and

An =

 
�
p� n+ 1

p+ n

! 
�
p� n+ 2

p+ n� 1

!
� � �

 
�
p� 1

p+ 2

!
A1

= 2(�1)n
p(p� 1) � � � (p� n+ 1)

(p+ n) � � � (p+ 1)

= (�1)n
2(p!)2

(p+ n)!(p� n)!
(2.3)

for 1 � n � p: In particular, h(z) is a polynomial of degree p: First note that h(1) = 0
by an equivalent relation of (2.1):

z(1� z)h0(z) + p(1 + z)h(z) + p(z � 1) = 0:(2.4)

Di�erentiation of (2.4) yields that

z(1� z)h00(z) + (p+ 1 + (p� 2)z)h0(z) + ph(z) + p = 0;(2.5)

in particular, h0(1) = � p

2p�1
: Further di�erentiating (2.5), we obtain

z(1� z)h000(z) + (p+ 2 + (p� 4)z)h00(z) + (2p� 2)h0(z) = 0;

and h00(1) + h0(1) = 0; especially. Now we sum up the above result as

h(1) = 0; h0(1) = �h00(1) = �
p

2p� 1
(6= 0):

Here we note that
zf 0(z)

f(z)
=

z � pzp�1

(z � 1)2pf(z)
=

p

h(z)
;

so Theorem 1.1 implies that Re p

h(z)
� 0: Hence, we obtain that infz2�Re p

h(x)
= 0 in

fact by showing the following elementary

Lemma 2.1. Suppose that h(z) is analytic near z = 1 and that

h(1) = 0; h0(1) 6= 0:

Then we have

lim inf
�3z!1

Re
1

h(z)
�
�Re[h0(1) + h00(1)]

2jh0(1)j2
:

Proof. We write h(ei�) = u(�) + iv(�): Then we have

u0(�) + iv0(�) = iei�h0(ei�); and

u00(�) + iv00(�) = �ei�h0(ei�)� e2i�h00(ei�):
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Letting � = 0; we have u(0) = v(0) = 0;

u0(0)2 + v0(0)2 = jh0(1)j2; and

u00(0) = �Re[h0(1) + h00(1)]:

Thus, by de l'Hospital's theorem, we see that

lim inf
�3z!1

Re
1

h(z)
= lim inf

�3z!1

Reh(z)

jh(z)j2

� lim
�!0

Reh(ei�)

jh(ei�)j2
= lim

�!0

u(�)

u(�)2 + v(�)2
= lim

�!0

u0(�)

2(u0(�)u(�) + v0(�)v(�))

=
1

2
lim
�!0

u00(�)

u00(�)u(�) + u0(�)2 + v00(�)v(�) + v0(�)2

=
u00(0)

2(u0(0)2 + v0(0)2)
=
�Re[h0(1) + h00(1)]

2jh0(1)j2
:

3. Proof of Theorem 1.2.

This section devoted to a proof of Theorem 1.2. We remark that this theorem
produces a more direct proof of the extremality of Fukui's function: infz2�Re p

h(z)
= 0:

First, we prepare the next

Lemma 3.1. For a positive integer p;

sin2p
�

2
=

pX
n=0

21�"�2p(�1)n
 

2p
p� n

!
cosn�;(3.1)

where " = �0;n; i.e., " = 1 if n = 0 and " = 0 otherwise.

However this is a known result, we include a proof for convenience of the reader.

Proof. Since the function sin2p �
2 is even, its Fourier expansion takes a form: sin2p �

2 =P
1

n=0Bn cosn�; here

Bn =
1

2"�

Z 2�

0
sin2p

�

2
cosn�d�

for n = 0; 1; 2; � � � : Now we introduce an auxiliary double sequence

�k;n =
Z 2�

0
sin2k

�

2
cos n�d�

4



for k; n = 0; 1; 2; � � � : Then, in order to prove the assertion, it su�ces to show that

�k;n =

8>><
>>:
�(�1)n21�2k

0
@ 2k

k � n

1
A if 0 � n � k;

0 if k < n:

Using a descending formula:

�k;n =
Z 2�

0
sin2k�1

�

2

 
sin

�

2
cosn�

!
d�

=
1

2

Z 2�

0
sin2k�1

�

2

�
sin(n+

1

2
)� � sin(n�

1

2
)�
�
d�

=
1

4

Z 2�

0
sin2k�2

�

2

�
(cosn� � cos(n+ 1)�)� (cos(n� 1)� � cosn�)

�
d�

=
1

4
(2�k�1;n � �k�1;n+1 � �k�1;n�1);

we can show the above equation by induction with respect to k:

Now we return to Fukui's extremal function f: By (2.3), we have

h(z) =
pX

n=0

Anz
n = 1 +

pX
n=1

(�1)n
2(p!)2

(p+ n)!(p� n)!
zn

=
pX

n=0

(�1)n21�"
(p!)2

(p+ n)!(p� n)!
zn:

In particular, we obtain

Reh(ei�) =
pX

n=0

(�1)n21�"
(p!)2

(p+ n)!(p� n)!
cos n�:(3.2)

On the other hand, we have

(1� cos �)p =

 
2 sin2

�

2

!p

=
pX

n=0

(�1)n21�"�p
 

2p
p� n

!
cosn�

by (3.1), and

Cp2
1�"�p

 
2p

p� n

!
= 21�"

(p!)2

(2p)!

(2p)!

(p+ n)!(p� n)!
= 21�"

(p!)2

(p+ n)!(p� n)!
;

hence now Theorem 1.2 is proved.

5


