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x0. Introduction.
In order to discuss the connection between univalent functions and Teichm�uller

spaces, it is important to consider the class S of Schwarzians of all schlicht functions
on the exterior �� of the unit disk, i.e.,

S = fSf = (f 00=f 0)0 �
1

2
(f 00=f 0)2 : f 2 �0g;

where �0 is the class of all univalent meromorphic functions f on �� having an
expansion

f(z) = z +
1X
n=1

bnz
�n:

It should be noted that the correspondence f 7! Sf is a bijection from �0 to S:
The class S inherits a topology by the hyperbolic sup-norm of weight �2 (so-

called the Nehari norm) of the space of holomorphic quadratic di�erentials. The
space S has been studied by many authors (Bers [6], Gehring [15], [16], �Zuravlev
[28], Flinn [13], Shiga [24], Overholt [20], Sugawa [25], etc.). In particular, the �rst
remarkable result by Gehring [15] states that

IntS = T (= the universal Teichm�uller space):

As the Bers projection plays a very important role in the Teichm�uller theory, the
(generalized) Bers projection is thought to do so in the investigation of the space
S, too. x1 is devoted to study the (generalized) Bers projection mainly in the case
that the domain has no exterior (Theorem 1). As a corollary of Theorem 1, we give
a simple proof of a theorem of Overholt [19].

In x2 and succesive sections, we shall consider IntS(� ), where � is an arbitrary
Fuchsian group. The \�-lemma" and the \improved �-lemma" �rst introduced by
Ma~n�e-Sad-Sullivan [17] and Sullivan-Thurston [26] are greatly powerful tools to
study the structure of holomorphic families and, indeed, have many applications in
various aspects (for example, see [7], [9], [11], [21], [24]).

As a new application of the \extended �-lemma" (Bers-Royden [9]), in x2, we give
another proof of a theorem of �Zuravlev: T (� ) is the zero component of IntS(� ):
Our proof is based only on the openness of the universal Teichm�uller space due
to Ahlfors and the �-lemma while �Zuravlev's one is essentially relies upon the
Grunsky's inequality.
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In x3 we extend the �-lemma to the Banach space version and as an application of
this extension, in x4, we shall give a proof of the submersivity of the Bers projection
corresponding to the element of IntS(� ) under certain additional hypothesis.

In Appendix, we shall show the holomorphy of the (generalized) Bers projection
(Proposition 1) for the convenience of the reader.

x1. The Bers projection.
Let D be a hyperbolic open subset of the extended plane bC; that is, the com-

plement E = bC nD contains at least three points. We shall consider the complex
Banach space B2(D) consisting of all holomorphic functions ' on D with norm

k'kD = sup
z2D

�D(z)
�2j'(z)j <1;

where �D(z)jdzj is the Poincar�e metric of each component of D which is of constant
negative curvature �4: We note that the �niteness of the norm k'kD implies that
'(z) = O(jzj�4) as z !1 if 1 2 D:

Now letM(E) be the open unit ball with center 0 of the Banach space L1(E) =

f� 2 L1(C) : � = 0 on C n Eg; where E is any measurable set of bC: For each
� 2 M(C); we denote by w� the normalized �-conformal map, precisely, the qua-

siconformal silf-map of bC �xing 0, 1 and 1; which satis�es the Beltrami equation

(w�)�z = � � (w�)z

on C (for the details, see [2]). Set E = bC n D for a hyperbolic open set D: For
� 2M(E); w�jD is a univalent meromophic function on D; therefore the Beardon-
Gehring theorem [4] implies that �(�) = Sw�jD belongs to B2(D); where Sf denotes
the Schwarzian derivative of a locally univalent meromorphic function f :

Sf = (f 00=f 0)0 �
1

2
(f 00=f 0)2:

The map � = �D :M(E)! B2(D) is called the (generalized) Bers projection.
The following proposition (essentially due to Bers) is of basic importance in the

sequel.

Proposition 1. Let D be any hyperbolic open subset of bC and E be its complement.
Then the Bers projection � : M(E) ! B2(D) is holomorphic and its di�erential
map d�� : L1(E)! B2(D) at � 2M(E) admits an estimate of operator norm:

kd��k �
12

1 � k�k1
:

In particular, the derivative at 0 is explicitly described as follows:

d0�[�](z) = �
6

�

ZZ
E

�(�)

(� � z)4
d�d� (� = � + i�)

for every � 2 L1(E):

The proof of this proposition is well-known (at least, in the case that D is a
quasidisk). For convenience, we shall give a proof of this proposition in Appendix.

For a while, let us impose the case that E is nowhere dense. The following
theorem, at a glance, may seem slightly curious.
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Theorem 1. Suppose that D is a dense hyperbolic open set in bC consisting of
�nitely many components Dj (j = 1; � � � ; n): Then the Bers projection � :M(E)!

B2(D) is injective, where E = bC n D: Further suppose that D is connected, then
the di�erntial map of � is injective at each point of M(E): In particular, d0� :
L1(E)! B2(D) is a (bounded) embedding.

Remark. Ovserve that the class of nowhere dense compact sets E with positive
area is su�ciently large. In particular, when E is connected, it is worth to note
that B2(D) is isomorphic to B2(�) where � = fjzj < 1g is the unit disk. Further,
we remark that for any � 2 M(E) n f0g; w� is holomorphic on an open dense
set and self-homeomorphism of C with �nite modulus of the H�older continuity of
order 1 � ", where " is small if k�k1 is su�ciently small (cf. [2]), but not globally
holomorphic.

We shall prepare a simple lemma.

Lemma. Under the hypothesis of Theorem 1, consider a homeomorphism A : bC!bC: If each restriction AjDj is a restriction of M�obius transformation Aj (j =
1; � � � ; n); then A is a M�obius transformation in itself.

Proof. We can deduce the desired conclusion from a simple observation that if
Dj \Dk contains at least three points then Aj = Ak: �

Proof of Theorem 1. The injectivity of � is almost trivial. In fact, if �(�1) = �(�2)
for �1; �2 2M(E); then A = w�2 � (w�1)�1 satis�es the hypotheses of the lemma
above, thus A 2M�ob. From the normalization, we conclude that A =id, i.e., w�1 =
w�2 on bC; hence �1 = �2:

Secondly, we prove the injectivity of the di�erential map:

d0�[�](z) = �
6

�

ZZ
E

�(�)

(� � z)4
d�d�:

Without loss of generality, we may assume that 1 2 D: Then d0�[�] has the
expansion

d0�[�] = �
1

�

1X
n=0

(n+ 1)(n + 2)(n+ 3)

ZZ
E

�n�(�)d�d� � z�n�4;

near1: Suppose that � 2 Ker d0�; then
RR
E �

n�(�)d�d� = 0 for each non-negative
integer n; hence

(�)

ZZ
E

f(�)�(�)d�d� = 0

for all (holomorphic) polynomialsf(�) of �: Since E has no interior points, famous
Mergelyan's theorem (cf. [14], [22]) says that any continuous function on E is
uniformly approximated by polynomials on E; therefore (�) holds for all continuous
functions f on E: Because the space of continuous functions C(E) is dense in L1(E);
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further (�) holds for all integrable functions f on E; therefore � must vanish a.e.
on E:

Finally, the injectivity of d�� for general � 2 M(E) easily follows by the ar-
gument of the change of base points. We shall illustrate this argument, here. Let
R�(�) denote the Beltrami coe�cient (or the complex dilatation) of the quasicon-
formal map w� � w� for � 2M(C): Direct computation shows that R� : M(C)!
M(C) is biholomorphic and R� sends M(E�) ontoM(E); where E� = w�(E): On
the other hand, since w�jD is conformal, induced map (w�)� : B2(D

�) ! B2(D)
is an isometric (Banach space) isomorphism where (w�)�' = ' � (w�jD) � (

dw�

dz )2

and D� = w�(D): Then a formal calculation shows that the following diagram
commutes:

M(E�)
R�

����! M(E)

d0�D�

??y d��D

??y
B2(D�)

(w�)�

����! B2(D):

By the former step, d0�D� is injective, therefore d��D is injective, too. �

We should note that di�erential map d�� does not has necessarily closed range,
therefore above theorem does not state that � :M(E)! B2(D) is immersive.

Example. In Theorem 1 and the previous lemma, necessary is the hypothesis that
D consists of �nitely many components. Here, we exhibit a simple counterexample.

Let I be the interval [0,1] and U be a dense open subset of I such thatm(U) < 1;
where m denotes the 1-dimensional Lebesgue measure. We can divide the comple-
ment of U into measurable two parts, say C1 and C2; with positive linear measure.
Choose k1; k2 2 (0; 1) such that k1m(C1) = k2m(C2); and de�ne a function u by

u(x) =

Z x

0

(1 + k1�C1 (t)� k2�C2 (t))dt;

where �
Cj

denotes the characteristic function of Cj : Then u is an absolutely con-

tinuous strictly increasing function from I onto I and u0 = 1 on U:
Now we set

F (x + iy) = [x] + u(x � [x]) + iy for x + iy 2 C

and F (1) = 1; where [x] denotes the largest integer not exceeding x: Sim-

ple calculations show that F : bC ! bC is 1+k
1�k -quasiconformal map, where k =

maxf k1
2+k1

; k2
2�k2

g: Furthermore, F is a translation on each component of D; where

D = fx + iy 2 C : x � [x] 2 Ug; but not globally a translation. Let � be the

Beltrami coe�cient of F and E = bC n D; then � 2 M(E) n f0g but �D(�) = 0;

therefore �D :M(E)! B2(D) is not injective whereas D is open dense in bC:
As a corollary of the �rst part of above theorem, we can give a simple proof of a

result of Overholt. Before stating this result, we shall explain a needed terminology.
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A hyperbolic domain D is called (conformally) rigid if any univalent function f :

D ! bC whose Schwarzian derivative has norm smaller than a positive constant
depending only on D must be a M�obius transformation. In particular, when D is
simply connected, D is rigid if and only if the Schwarzian derivative of a Riemann
mapping of D corresponds to an isolated point of S: Concerning with the existence
of rigid domains, we refer articles Thurston [27] and Astala [3].

Corollary(Overholt [19]). The complement of any (conformally) rigid domain is
of zero area.

Proof. Let D be a rigid domain and E be its complement. By de�nition, the Bers
projection � : M(E) ! B2(D) must be the constant map 0. If D would have
exterior points, clealy � would be non-constant, therefore E must have no interior
points. Now Theorem 1 yields thatM(E) is a singleton, hence E has the Lebesgue
measure zero. �

Note that, in the above proof, we have used only the fact that � :M(E)! B2(D)
is a constant map, therefore this corollary also holds under a weaker hypothesis, for
example, that the connected component of S(D) = fSf 2 B2(D) : f is univalent
meromorphic function on Dg containing 0 has topological dimension at most 1.

Remark. The above corollary means that any rigid domain has a complement of
2-dimensional Hausdor� measure zero. On the other hand, for any given value
t 2 (1; 2); Astala [3] constructed the rigid domain whose Hausdor� dimension equals
to t:

x2. The �-lemma and another proof of �Zuravlev's theorem.
Throughout this section, we assume that D is a simply connected domain of

hyperbolic type. For every ' 2 B2(D) there exists a locally univalent meromor-
phic function f on D whose Schwarzian derivative equals to ': Once assigned a
normalization, say for example,

f(z) = (z � a) +
1X
n=2

cn(z � a)n

near a �xed point a 2 D n f1g; f satisfying the equation Sf = ' is uniquely
determined, denoted by f'; and it is turns out that ' 7! f'(z) is a holomorphic

map from B2(D) to bC for each �xed point z 2 D:
Now let G be a Kleinian group discontinuously acting on D and set

B2(D;G) = f' 2 B2(D) : (' � g) � g0=g0 = ' for all g 2 Gg

S(D;G) = f' 2 B2(D;G) : f
' is univalent in Dg:

As is easily seen, S(D;G) does not depend on the normalization.
For ' 2 B2(D;G); there exists a unique homomorphism �' : G! PSL2(C) =M�ob

so that f' � g = �'(g) � f' for all g 2 G; called the monodromy homomorphism of
': Note that the holomorphy of the map ' 7! f'(z) forces the holomorphy of the
map ' 7! �'(g) for each �xed g 2 G: Observe that �' is a monomorphism and that
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�'(G) is also Kleinian group for every ' 2 S(D;G): Let L1(E;G) be the complex
Banach space of the Beltrami di�erentials � 2 L1(E) which is (�1; 1)-form for G;
precisely,

(� � g) � g0=g0 = �

for every g 2 G and denote by M(E;G) the unit ball of L1(E;G); that is,
M(E;G) = L1(E;G) \M(E); where E is any G-invariant measurable set in C:

It is known that for every � 2 M(E;G); �D(�) belongs to B2(D;G); where

E = bC nD: We now set

T (D;G) = �D(M(E;G)):

Note that T (D;G) � S(D;G) and that T (D;G) is connected.
In case that D is the exterior of the unit disk �; denoted by ��; and that � is

a Fuchsian group acting on ��; T (� ) = T (��; � ) is called the (Bers embedded)
Teichm�uller space of Fuchsian group �: For abbriviation, let S(� ) denote S(��; � ):
In particular, when � is the trivial group 1, we call T = T (1) the universal Te-
ichm�uller space and S = S(1) the quasi-Teichm�uller space. It should be mentioned

that Nehari's theorem implies that for any univalent function f : �� ! bC; its
Schwarzian derivative Sf has norm not greater than 6, thus Sf 2 S:

The following theorem is a basic fact for our argument in the present section.

Theorem A (Ahlfors [1]). The universal Teichm�uller space is a bounded domain
in B2(�

�):

We can characterize the Teichm�uller space of � as the set of all holomorphic qua-
dratic di�erenials ' 2 B2(��; � ) such that f' can be extended to a � -compatible

quasiconformal self-map of bC; where a quasiconformal map w : bC ! bC is � -
compatible if and only if for every  2 �; w � = A �w on bC for some A 2M�ob:

Now we state the Bers-Royden version of the �-lemma in the form which is
convenient only for our present aim and which has not necessarily full generality.

Theorem B (extended �-lemma; [9] and [8]). Let E be a subset of bC containing
at least four points and G be a subgroup of M�ob acting on E: Suppose that maps
f : �r �E ! bC and � : �r ! hom(G;M�ob) have the following four properties:

(i) f(0; � ) = idE;

(ii) f� = f(�; � ) : E ! bC is an injection for every �xed � 2 �r;

(iii) f(�; z) : �r ! bC is a holomorphic map for every �xed z 2 E;
(iv) f� � g = ��(g) � f� for all � 2 �r and g 2 G;

where �r = fz 2 C : jzj < rg:

Then the restriction f j�r=3 � E has a canonical extension f̂ : �r=3 � bC ! bC
with the following properties:

(a) f̂ has also above four properties (i)-(iv) in which �r; E is just replaced by

�r=3; bC respectively,

(b) f̂� = f̂(�; � ) : bC! bC is a quasiconformal map,

(c) the Beltrami coe�cient �(�) of f̂� is a holomorphic map from �r=3 to
L1(C; G);
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(d) for each � 2 �r=3; �(�) is harmonic on D = bC n E; precisely, �(�) =

�D�2 �  (�) on D for a  (�) 2 B2(D;G):

The extension f̂ : �r=3 � bC ! bC with the properties (a) and (d) is uniquely
determined.

The map f : �r �E ! bC with the above properties (i)-(iv) is called admissible.
As an application of the �-lemma (in the above form), we shall give another

proof of �Zuravlev's theorem:

Theorem C ([28]). For any Fuchsian group �; T (� ) is the connected component
of IntS(� ) which contains the origin.

Here, note that we shall not use the fact that T (� ) is open in B2(��; � ) except
Ahlfors' theorem (Teorem A).

Theorem A implies that T (� ) � T \ B2(�
�; � ) � IntS(� ): Since T (� ) is con-

nected, Theorem C is obtained by the special case L = B2(��; � ) of the following
theorem which is a slight generalization of Theorem 2 of �Zuravlev [28].

Theorem 2. Suppose that L is a (complex Banach) submanifold of B2(�
�; � ) and

V is a connected component of IntL(L \ IntS(� )); where IntLX is the interior of
X in L: Then the condition V \ T (� ) 6= � implies that V � T (� ):

In order to prove this theorem, we shall prepare the following proposition which,
in some sense, is a weak version of Theorem 1 of �Zuravlev [28].

Proposition 2. Suppose that a holomorphic function F : �! B2(��; � ) satis�es
that F (�) � S(� ): If F (�) \ T (� ) 6= �; then F (�) � T (� ):

Proof. Set 
 = F�1(T (� )) � �:We know that 
 is open and closed, hence 
 = �
or � thus the proof completes, if we show the following claim: for each �0 2 
; the
Poincar�e disk with center �0 and radius log 2 is contained in 
:

Now we shall show the above claim. Set '0 = F (�0) 2 T (� ) and G = �'0(� ):
We may assume that �0 = 0 because the unit disk � is analytically homoge-
neous and the Poincar�e distance is invariant under the Aut�: Now we de�ne the
mapping g : � � �� ! bC by g(�; z) = fF (�)(z) and h : � � g0(�0) ! bC by
h(�; z) = g(�; g0�1(z)) = g� � g0�1(z) where g� = g(�; � ): Since F (�) � S(� ); h
has properties (i)-(iv) listed in Theorem B, therefore for each � 2 �1=3; h(�; � )

can be canonically extended to the G-compatible quasiconformal self-map ĥ� of bC:
On the other hand, g0 = f'0 can be extended to a � -compatible quasiconformal
self-map ĝ0 of bC because ' 2 T (� ): Hence, for every � 2 �1=3; g� is extended to a

� -compatible quasiconformal self-map ĥ� � ĝ0 of bC; therefore F (�) 2 T (� ): �

Proof of Theorem 2. Suppose that L is a complex Banach submanifold of B2(��; � )
modeled on a Banach space A with norm k � k: Let � : U ! A be a holomorphic
chart of the component V such that U is a subdomain of V and thus W = �(U) is
a subdomain of A: Now for every a 2 �(U \ T (� )); set �(a) = infb2@W ka� bk: We
take b 2 A with kbk = �(a) and de�ne a holomorphic mapping F : �! B2(�

�; � )
by the formula F (�) = ��1(a + �b): Since F (�) � S(� ) and F (�) \ T (� ) 6= �;
Propostion 1 yields that F (�) � T (� ): Consequently the following assertion holds:
if a 2 �(U \T (� )) then the ball in A with center a and radius �(a) is also contained
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in �(U \ T (� )): By this assertion, it is known that �(U \ T (� )) is open and closed
in W thus �(U \ T (� )) = W or �: This conclusion means that if a coodinate
neiborhood U of V has non-empty intersection with T (� ); then U � T (� ): Hence,
it is easy to see that if V \ T (� ) 6= �; then V � T (� ): �

x3. An extension of the �-lemma.
In preceding section, we applied �-lemma by making the functions one complex

variable, but sometimes it is essential to treat functions with several complex vari-
ables. From this reason, we shall make a generalization of the �-lemma in this
direction and apply this generalized �-lemma to the investigation of IntS(� ):

Theorem 3. Let A be a complex Banach space with norm k � k and Ar be the ball

fx 2 A : kxk < rg: Let E be a subset of bC containing at least four points and

G be a subgroup of M�ob acting on E: Suppose that maps f : Ar � E ! bC and
� : Ar ! hom(G;M�ob) have the following four properties:

(i) f(0; � ) = idE;

(ii) fx = f(x; � ) : E ! bC is an injection for every �xed x 2 Ar;

(iii) f(�; z) : Ar ! bC is a holomorphic map for every �xed z 2 E;
(iv) fx � g = �x(g) � fx for all x 2 Ar and g 2 G;

where Ar = fx 2 A : kxk < rg:

Then the restriction f jAr=3 � E has a canonical extension f̂ : Ar=3 � bC ! bC
with the following properties:

(a) f̂ has also above four properties (i)-(iv) in which Ar; E is just replaced by

Ar=3; bC respectively,

(b) f̂x = f̂(x; � ) : bC! bC is a quasiconformal map,

(c) the Beltrami coe�cient �(x) of f̂x is a holomorphic map from Ar=3 to
L1(C; G):

(d) for each x 2 Ar=3; �(x) is harmonic on D = bC n E; precisely, �(x) =

�D�2 �  (x) on D for a  (x) 2 B2(D;G):

The extension f̂ : Ar=3 � bC! bC with the properties (a) and (d) is uniquely deter-
mined.

Sketch of proof. First, normalizing by M�obius transformations, we may assume that
0; 1;1 2 E and that f(x; � ) �xes 0,1 and 1 for each x 2 Ar (cf. [9, x1]). For

every x 2 A with kxk = 1; we can de�ne an admissible map gx : �r � E ! bC by
the formula gx(�; z) = f(�x; z): By Theorem B, gxj�r=3 � E can be canonically

extended to ĝx : �r=3�bC! bC with properties (a){(d) in Theorem B. Set f̂(�x; z) =

ĝx(�; z) for every x 2 @A1; � 2 �r=3; z 2 bC: By the uniqueness part of Theorem B,

f̂ : Ar=3� bC! bC is a well-de�ned map, and this should be the canonical extension
of f jAr=3 �E:

The nontrivial part of Theorem 3 are only (a) and (c). (The part (b) is a
consequence of Theorem B.) We now outline the proof of the property (a). It

su�ces to prove the assertion that f̂( � ; z) : Ar=3 ! C is holomorphic for �xed

z 2 bC n f0; 1;1g: Since the map f̂( � ; z) excludes three points 0,1 and 1; Schottky

theorem yields the local boundedness of f̂( � ; z): The holomorphy of locally bounded
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functions on Banach spaces follows from the existence of the Gateaux derivative at
every point (see, for example [10]), therefore the proof of the holomorphy of f̂( � ; z)
is reduced in the case A = C2: In this case, we can prove the above assertion by
the quite same method as in [9], thus we shall leave the proof for the reader as an
exercise.

Once the admissibility of f̂ established, the proof of the property (c) can be
proceeded in the same way as in [9, x4], which we shall omit.

x4. Investigation of IntS(� ).
Gehring showed that IntS = T in [15] and recently Shiga [24] proved that

IntS(� ) = T (� ) for any �nitely generated Fuchsian group of the �rst kind. Gen-
erally, it is conjetured that IntS(� ) = T (� ) for any Fuchsian group �: By virture
of �Zuravlev's theorem (Theorem C), this conjecture is equivalent to the claim that
IntS(� ) is connected.

Through this section, let � denote an arbitrary Fuchsian group acting on ��:
We begin with a proof of the following proposition which is a consequence of the

extended �-lemma (Theorem B).

Proposition 2. Let V be a connected component of IntS(� ): For any '1; '2 2 V;

there exists a quasiconformal map F from bC onto itself with the following proper-
ties:

(1) f'2 = F � f'1 on ��;

(2) �'2() = F � �'1() � F�1 on bC for all  2 �:

Remark. It should be mentioned that the Beltrami coe�cient � = F�z=Fz of the

above F automatically belongs to M(bC n f'1(��); �'1(� )):

Proof. For '1; '2 2 V; we de�ne an equivalence relation � by the rule: '1 � '2
if and only if the claim in the above proposition is valid for '1 and '2: Since V
is connected, it su�ces to show that each equivalence class is open in V: Let V1
be any equivalence class. Then the following is true: For arbitrary '1 2 V1; if
'2 2 B2(�

�; � ) satis�es k'2 � '1k�� < a
3 ; then '2 2 V1; where

a = dist('1; @S(� )) = inf
'2@S(� )

k'� '1k�� (> 0):

Indeed, for any  2 B2(�
�; � ) with k k�� = a; we have '1 + � 2 S(� ) for each

� 2 �; therefore we can de�ne an admissible map f : � � f'1(��) ! bC by the
formula:

f(�; z) = f'1+� � (f'1)�1(z):

Now Theorem B is applicable. Let f̂ : �1=3 � bC ! bC be the canonical extension

of f : �1=3 � f'1(��) ! bC: Then, for '2 = '1 + � (� 2 �1=3); F = f̂(�; � )
works. �

For g 2M�ob=PSL2(C) such that g 6=id, g is called elliptic, parabolic, loxodromic
if tr2g 2 [0; 4); tr2g = 4; tr2g =2 [0; 4] respectively, where tr2g = (a + d)2 if g is
represented by a matrix (ac

b
d) 2 SL2(C):We note that an element g 6=id of Kleinian

group is elliptic if and only if g has �nite order.
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Corollary. For each ' 2 IntS(� ); the monodromy homomorphism �' : � !M�ob
is type-preserving, precisely, �' sends elliptic, parabolic and loxodromic elements
to elliptic, parabolic and loxodromic elements, respectively.

Proof. At �rst, �'() is elliptic if and only if  is elliptic because �' is monomor-
phism. Next, observe that the map � : ' 7! tr2�'() is holomorphic for �xed

 2 �: Since the isomorphism induced by a quasiconformal self-map of bC is type-
preserving, Proposition 2 implies that if �'0() is parabolic for a '0 2 IntS(� ), then
� is constant 4 on the component of IntS(� ) containing '0; thus � is constant 4
on the whole B2(��; � ): From the above facts, the desired conclusion immediately
follows. �

Let '0 2 IntS(� ) and set D = f'0(��); G = �'0(� ) and E = bC nD: The Bers
projection � :M(E;G)! B2(D;G) is expected to reect the poperties of domain
D; therefore the author thinks that it is important to study the Bers projection
� = �D:

As an application of Theorem 3, we shall show submersivity of the Bers projec-
tion �D:

Theorem 4. Let '0 2 IntS(� ) and set D = f'0(��); G = �'0(� ) and E = bCnD:
Let V be the zero-component of IntS(D;G): Concerning with the Bers projection
� :M(E;G)! B2(D;G); the following is true. V � T (D;G) and � : ��1(V )! V
is a (split) submersion.

Proof. De�ne a biholomorphic isometry A : B2(D;G)! B2(��; � ) by the formula

A( ) = Sf �f'0 = ( � f'0) �

�
df'0

dz

�2

+ '0:

Noting that A(S(D;G)) = S(� ); we set V0 = A(V ): Let any  1 2 V be �xed. First
let us show that  1 2 T (D;G): Set '1 = A( 1) 2 V0: Then Proposition 2 produces

a quasiconformal map F : bC! bC with the properties:

(1) f'1 = F � f'0 on ��;

(2) �'1() = F � �'0() � F�1 on bC for all  2 �:

We denote by � the Beltrami coe�cient of F: By Remark below Proposition 2,
� 2M(E;G); and by (1), we can conclude that

A( 1) = '1 = SF�f'0 = A(SF );

hence  1 = SF = �(�) 2 �(M(E;G)) = T (D;G):
Next, we shall show the submersivity of � at 0. (The submersivity of � at general

points follows also from the one at 0 and the typical argument of the change of base
points.) To this end, it is su�cient to prove the existence of the local holomorphic
section of � which sends 0 to 0. Set a =dist(0; @S(D;G)) =dist('0; @S(� ))(> 0):

Now we de�ne admissible map f : B2(D;G)a �D ! bC by the formula f( ; z) =
f (z); then, by virture of Theorem 3, f jB2(D;G)a=3 � D can be canonically ex-

tended to f̂ : B2(D;G)a=3 � bC! bC with the properties (a)-(d) listed in Theorem

10



3. Denote by �( ) the Beltrami coe�cient of f̂( ; � ) for every  2 B2(D;G)a=3;
then by (b) in Theorem 3, � : B2(D;G)a=3 ! M(E;G) is a desired holomorphic
section of �: �

Remark(1). In the case '0 = 0; the above theorem provides a proof of the submer-
sivity of the (original) Bers projection � :M(�; � )! T (� ) (cf. Bers [5], Earle-Nag
[12]). The uniqueness part of Theorem B shows that the local holomorphic section
� constructed above is, in this case, nothing but the Ahlfors-Weill section (cf. [1],
[7]). More generally, in the case '0 2 T (� ) (i.e. D is a quasidisk and G is a quasi-
Fuchsian group), V = T (D;G) and the submersivity of �D : M(E;G) ! T (D;G)
is well-known, in fact, which follows from the case '0 = 0 by the argument of the
change of base points.

(2). The author thinks the above theorem to be meaningful in the sense that it
may provide informations as to the question whether IntS(� ) = T (� ): By this
theorem, for example, it seems to the author that E would have interior points. In
fact, if E has no interior points, then both Theorem 1 and Theorem 4 implies that
� : M(E;G) ! B2(D;G) is a local embedding at 0, in particular, the di�erntial
map d0� is a Banach space isomorphism L1(E;G) ! B2(D;G) �= B2(�

�; � );
which seems to him impossible.

Appendix: The holomorphy of the Bers projection.
The proof of Proposition 1 can be performed in the quite same way as in Nag

[18]. Theorem of Beardon-Gehring [4] yields that

k�(�)kD � 12 for any � 2M(E):

Since, as is seen above, � is (globally) bounded, it su�ces to prove the existence
of the Gateaux derivative d�� at each point � 2 M(E) (see, for example, [10]).
Without loss of generality, we may assume that 1 =2 D:

Let any "; a 2 (0;1) be �xed. We choose a K 2 (0;1) satisfying

(�) k�k1 + (1 + a)"K < 1;

and pick ~" 2 (0;1) so that (1 + a)" < ~" and k�k1 + ~"K < 1: Let � 2 L1(E) with
k�k1 < K: Since k�+ t�k1 < 1 for t 2 �~" = fjtj < ~"g; the map

(t; z) 7! w�+t�(z) 2 C for (t; z) 2 �~" �D

is holomorphic (cf. [2]) and d
dzw

�+t�(z) 6= 0 for z 2 D: Therefore (t; z) 7!
Sw�+t� jD(z) = �(� + t�)(z) is a holomorphic function of (t; z) 2 �~" � D: Now

we set �(z) = d
dt
�(� + t�)(z)jt=0: In particular, when � = 0; we can obtain the

concrete form of � :

�(z) = �
6

�

ZZ
E

�(�)

(� � z)4
d�d�

by the formal calculation and the formula:

d

dt
wt�(z)

����
t=0

= �
z(z � 1)

�

ZZ
E

�(�)d�d�

�(� � 1)(� � z)
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(cf. [1], [2]). Fix any z0 2 D and '(t) = �D(z0)
�2 � �(� + t�)(z0); then we obtain

that j'(t)j � 12: On the other hand, for t 2 �"

'(t)� '(0)� t'0(0) =
1

2�i

Z
j�j=(1+a)"

(
1

� � t
�

1

�
�

t

�2
)'(�)d�

=
1

2�i

Z
j�j=(1+a)�

t2

�2(� � t)
'(�)d�;

hence we have an estimate

j'(t)� '(0)� t'0(0)j �
12jtj2

(1 + a)a"2
:

Since z0 2 D is arbitrary, we conclude that

k�(� + t�) � �(�)� t�kD �
12jtj2

(1 + a)a"2
= o(jtj) as t! 0:

In this way, we can show the existence of the Gateaux derivative d�� = � 2 B2(D):
Finally, let us estimate the operator norm kd��k: By using same notations as

above, we obtain

'(t)� '(0) =
1

2�i

Z
j�j=(1+a)"

t

�(� � t)
'(�)d�;

thus j'(t)� '(0)j � 12jtj
a" : This estimate implies that

�(�+ t�)� �(�)

t


D

�
12

a"
;

and by taking the limit for t! 0;

kd��[�]kD �
12

a"

for all � 2 L1(E)K ; hence kd��k �
12
a"K : Since " and K is arbitrary as long as (�)

holds, now we have

kd��k �
1 + a

a
�

12

1 � k�k1
;

�nally, by taking the limit for a!1; the desired estimate follows. �

Department of Mathematics, Faculty of Science,

Kyoto University, Kyoto 606, Japan
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