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x0. Introduction. As is well-known, the hyperbolic-sup norm (or the Nehari

norm) of the Schwarzian derivative of a meromorphic function is closely related to

its (global or local) univalence. The famous Nehari-Kraus theorem and Ahlfors-

Weill theorem are of fundamental importance in this direction of research.

In this note, in order to clarify this relationship more, we shall introduce, in

section 2, a class of \local" norms on the space of Schwarzians. These norms are

expected to be near the hyperbolic-sup norm, and determined by the local shape of

the domain. But, whereas the pullback by a conformal map is an isometry with the

hyperbolic-sup norm, it is only a quasi-isometry with these local norms. In section

3, we shall describe how the magnitude of norms of Schwarzian is controled by the

local quasiconformal(=qc) extendability, which the author has learned from [AG].

An essential use of the result in this section will be made in the article [S] of the

author. Finally, in section 4, we shall mention an estimate of the local norms of

Schwarzian by the injectivity radius.

x1. Preliminaries. Throughout this note, let D be a plane domain of hyperbolic

type (i.e., C n D contains at least two points) and �D(z)jdzj be the hyperbolic

metric with constant negative curvature �4. For a holomorphic function ' on

D; we de�ne the hyperbolic-sup norm of ' by k'kD = supz2D �D(z)
�2j'(z)j and

we denote by B2(D) the space of all holomorphic functions in D with a �nite

norm, which becomes a complex Banach space. For a non-constant meromorphic

function f on D; the Schwarzian derivative of f is de�ned by the formula Sf =

(f 00=f 0)0 � 1
2(f

00=f 0)2; which is holomorphic at z0 2 D if and only if f is locally

univalent at z0:

In this note, f : bC ! bC shall be called a k-qc map of bC where k is a constant

and 0 � k < 1; if f is an orientation-preserving self-homeomorphism of bC with

locally L2-derivatives such that j@�zf j � kj@zf j a.e. It should be alerted that this
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terminology is not standard. In fact, k-qc map is ordinarily called \ K-qc " where

K = 1+k
1�k : As a general reference for qc maps and the hyperbolic sup-norm of the

Scwarzian derivatives, we refer to [L].

The following theorem is fundamental for our present aim (e.g. see [L] pages 60,

72 and 87). The �rst assertion and the last assertion are known as the Nehari-Kraus

theorem and the Ahlfors-Weill theorem, respectively.

Theorem 1.1. If a meromorphic function on the disk � is univalent, then kSfk�
� 6: Moreover if f is extended to a k-qc map of bC; then kSfk� � 6k:

Conversely, each meromorphic function f on a disk � with kSfk� � 2 is uni-

valent, and if kSfk� < 2; then f can be extended to a 1
2kSfk�-qc map of bC:

x2. A class of norms. Now we de�ne certain norms which are determined by

only local data of the domain. The same ideas here were appeared in some earlier

works in this area, not necessarily in explicit forms.

Let 1 � A < 1 be a constant, D be a plane domain and de�ne DA(D) =

fB(z0; r); r > 0; B(z0; Ar) � Dg; where B(z0; r) = fz 2 C; jz � z0j < rg: Given
holomorphic function '; we de�ne

k'k(A)D = A2 � sup
�2DA(D)

k'k�

and

k'k(1)
D = sup

z2D
j'(z)jdist(z; @D)2:

The reason for the above notation k�k(1)
D will be explained in Remark 1 of Theorem

2.1.

The hyperbolic-sup norm have a monotonicity property that k'kD1
� k'kD2

if

D1 � D2; which is a conclusion of the Schwarz-Pick lemma. For the above de�ned

norms this property trivially holds, that is, if D1 � D2; then k'k(A)D1
� k'k(A)D2

for

1 � A � 1:

The following theorem gives a basic estimate for our norms.

Theorem 2.1.

(a) k'k(A)D � k'kD;
(b) k'k(A2)

D � k'k(A1)
D if 1 � A1 � A2 � 1;

(c) k'k(A)D � ( 2A
A+

p
A2�1 )

2k'k(1)
D (� 4k'k(1)

D ):

Proof. Let 1 � A1 � A2 < 1;� = B(z0; r) 2 DA2
(D); and set A = A2=A1;�

0 =

B(z0; Ar)(2 DA1
(D)): Since ��(z) = r

r2�jz�z0j2 ; ��0(z) = Ar
A2r2�jz�z0j2 ; we have
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��0(z)=��(z) � 1=A for all z 2 �: Thus k'k� = sup ��(z)
�2j'(z)j � A�2 sup ��0(z)�2j'(z)j �

A�2k'k�0 ; and this implies A2
2k'k� � A1

2k'k�0 : Therefore (b) follows if A2 <1:

In the case that A1 < A2 =1; for arbitrary z0 2 D let � = dist(z0; @D); r = �=A1

and � = B(z0; r)(2 DA1
(D)): Then ��(z0) = 1

r
= A1

�
; so we have �2j'(z0)j =

A1
2��(z0)

�2j'(z0)j � A1
2k'k� � k'k(A1)

D and thus we now get part (b) for

A2 =1:

Once (b) obtained, it su�ces to prove (a) in the case A = 1; in which case (a)

naturally follows from the monotonicity of the hyperbolic-sup norm.

Finally we show the statement (c). Let �(z) = dist(z; @D) for z 2 D and � =

B(z0; r) 2 DA(D): Then (c) is directly deduced from the following lower estimate

�(z)��(z) � A+
p
A2�1
2 (8z 2 �): Without loss of generality, we can assume that

z0 = 0: Since �(z) � �(0)� jzj � rA� jzj; it follows that �(z)��(z) � r(rA�jzj)
r2�jzj2 and

an elementary calculation shows that

(*)
r(rA� jzj)
r2 � jzj2 � A+

p
A2 � 1

2

for 0 � jzj < r; where equality holds for jzj = r

A+
p
A2�1 : �

Remark 1. From (b) and (c) it follows that k'k(1)
D � k'k(A)D � ( 2A

A+
p
A2�1 )

2k'k(1)
D ;

thus limA!1 k'k(A)D = k'k(1)
D ; which is a reason why we use the notation k � k(1)

D :

Remark 2. The constant ( 2A
A+

p
A2�1 )

2 in (c) is best possible. We shall explain

this fact for A > 1: Let D = U = B(0; 1); r = 1=A;� = B(0; r) and a = r

A+
p
A2�1 :

Note that � 2 DA(D) and a 2 �: Next, we choose a su�ciently large integer n

and a positive real number � 2 (0; n2 ) such that a = n�2�
n+2 : Put 'n;�(z) = (z+�)n;

then k'n;�k(1)
U = supjzj<1(1 � jzj)2jz + �jn = (1 � a)2(a + �)n: On the other

hand, from the equality in (*), we have k'n;�k� � ��(a)
�2ja + �jn = (2=(A +

p
A2 � 1))2k'n;�k(1)

U ; hence,

k'n;�k(A)U � A2k'n;�k� �
�

2A

A+
p
A2 � 1

�2

k'n;�k(1)
U :

The opposite inequality is already obtained in Theorem 2.1 (c), and hence we

conclude that equality holds in the above.

From the above theorem, it turns out that norms k � k(A)D are equivalent to

each other (1 � A � 1); so we have a complex Banach space eB2(D) = f' :

3



holomorphic function on D and k'k(A)D < 1g; which is independent of the special

choice of A:

By Theorem 2.1 (a), we obtain that B2(D) � eB2(D); but unfortunately, these

two spaces does not coinside generally. The following theorem gives a geomet-

ric criterion for the coincidence of the two spaces. (The implication (i))(ii) is a

conclusion from the Banach open mapping theorem.)

Theorem 2.2(Beardon-Pommerenke [BP]). The followings are equivalent to

each other.

(i) B2(D) = eB2(D);

(ii) There exists a constant c > 0 such that k'kD � ck'k(1)
D for all ' 2 eB2(D);

(iii) supfmod A;A is an annulus in D which separates the boundary of Dg <1;

where mod A = log R
r
if A = fz; r < jz � z0j < Rg:

On the other hand, for simply connected domains, the Koebe one-quarter theo-

rem yields that

Theorem 2.3(cf. [BP]). If D is a simply connected domain of the hyperbolic type,

then

k'kD � 16k'k(1)
D

Thus, for simply connected plane domains all the above norms are equivalent.

We conclude this section with an exposition of the quasi-isometricity of the pullback

by conformal maps with respect to these norms.

Suppose that F maps a domain D conformally into C: For ' 2 B2(F (D)) let

F �' denote the pullback of ' by F as a holomorphic quadratic di�erential, that is,

F �' = ' � F � (F 0)2: This pullback is an isometry with the hyperbolic-sup norm,

that is, kF �'kD = k'kF (D): While, with the local norms, the pullback is only a

quasi-isometry.

Proposition 2.4. Let F maps a hyperbolic plane domain D conformally into C:

Then kF �'k(1)
D � 16k'k(1)

F (D): Moreover if F is a M�obius transformation, then we

have a better estimate: kF �'k(A)D � ( 2
1+A�2 )

2k'k(A0)
F (D) where A � 1; A0 = A+A�1

2 :

Proof. The �rst assertion directly follows from the inequality: dist(F (z); @F (D))

� 1
4 jF 0(z)jdist(z; @D); which is an easy consequence from the Koebe one-quarter

theorem. Next suppose that F is a M�obius map. Let � = B(z0; r) 2 DA(D) and

set e� = B(z0; Ar): We now assert that �0 = F (�) 2 DA0(F (D)): We may assume

that F ( e�) = e� = U and that F (z) = z+a
1+az where 0 � a < 1: Since the center of

F (�) is c = 1
2(F (A

�1) + F (�A�1)) and the radius is r = 1
2 (F (A

�1)� F (�A�1));
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and therefore 1�c
r

� A0; it follows that F (�) 2 D 1�c

r

(U) � DA0(F (D)): By the

above assertion, we obtain an inequality kF �'k� = k'kF (�) � (A0)�2k'k(A0)
F (D);

which proves the second assertion. �

Remark 1. In particular, kF �'k(1)D = k'k(1)
F (D) if F is a M�obius map.

Remark 2. Let A � 1 and suppose that F : D ! C is a holomorphic map

which excludes at least two points and kSF kD � 2A2: Then, by the similar way

as above, we can show that dist(F (z); @F (D)) � jF 0(z)j
4A dist(z; @D); therefore we

obtain kF �'k(1)
D � (4A)2k'k(1)

F (D):

x3. The local qc-extendability. The \local" norms of the Schwarzian faithfully

measure the local qc-extendability of the function. Now we shall state this in a

precise form. Firstly the next lemma directly follows from Theorem 1.1 and the

de�nition of the norm.

Lemma 3.1. Let D be a hyperbolic plane domain, A � 1 and k 2 [0; 1) be constants

and f : D ! bC be a meromorphic function.

If f j� can be extended to a k-qc map of bC for any � 2 DA(D); then kSfk(A)D �
6kA2: Conversely, if kSfk(A)D � 2kA2; then f j� can be extended to a k-qc map ofbC for any � 2 DA(D):

Combining this lemma with the results of preceding section, we obtain the fol-

lowing theorem (cf. [AG]).

Theorem 3.2. Let D be a hyperbolic plane domain, A � 1 and k 2 [0; 1) be

constants and f : D ! bC be a meromorphic function.

If f j� can be extended to a k-qc map of bC for any � 2 DA(D) and if D is simply

connected, then kSfkD � 96kA2: Conversely, if kSfkD � 2kA2; then f j� can be

extended to a k-qc map of bC for any � 2 DA(D):

This result is crucial in author's paper [S] to estimate the norm of the Schwarzian

derivative of a meromorphic map which is constructed by a certain qc-deformation

and so has di�culties to calculate their derivatives.

x4. The injectivity radius. In this section we shall explain that the (local)

norm of the Schwarzian derivative measures local injectivity. Let d = dD denote

the hyperbolic distance on D which is induced by the hyperbolic metric �D(z)jdzj:
It is well-known that, for the unit disk U; d(0; z) = 1

2 log
1+jzj
1�jzj = arctanhjzj:

For each function f which is meromorphic on a plane hyperbolic domain D we

let �(f) = �D(f ) the injectivity radius of f; that is, �(f) = 1
2 inffdD(z1; z2); f(z1)
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= f(z2); z1 6= z2 2 Dg: We remark that �(f) = 1 if f is univalent. Firstly, in the

case that D = U; Theorems 1.1 produces the next result due to Kra-Maskit [KM],

although the original form is apparently di�erent from the next

Proposition 4.1 (Kra-Maskit). Let f be a meromorphic function on the unit

disk U and � = �(f) <1: Then

2 coth2 � � kSfkU � 6 coth2 �:

Corollary 4.2. For a meromorphic function f on the unit disk U; kSfkU < 1 if

and only if �(f) > 0:

Proof of Proposition 4.1. By the hypothesis, for any �1 > �(f) there exist two

points z1; z2 in U such that f(z1) = f(z2) and 0 < d(z1; z2) < 2�1: Let z0 be the

midpoint of the hyperbolic segment joining z1 and z2 and � denote the hyperbolic

disk fz; d(z0; z) < �1g:
Since f j� is not univalent, kSfk� > 2 by Theorem 1.1. Let A = coth�1 and

choose T 2 M�ob such that T (U) = U and T (0) = z0: It follows from the identity

Sf�T = Sf � T � (T 0)2 that

kSfkU = kSf�T kU � kSf�T k(A)U � A2kSf�T kT�1(�) = A2kSfk� > 2A2;

where we should note that T�1(�) = B(0; tanh�1) 2 DA(U): Because �1 > �(f)

is arbitrary, we have the �rst inequality.

Next, we shall prove the second inequality. Let z0 2 U be any point and � =

fz 2 U ; d(z0; z) < �g; where � = �(f ): By the hypothesis, f j� is univalent, so we

have kSfk� � 6 by the Nehari-Kraus theorem. We again choose T 2 M�ob such

that T (U ) = U and T (0) = z0: Then we have

jSf (z0)j�U (z0)�2 = jSf�T (0)j�U (0)�2 = jSf�T (0)j�T�1(�)(0)
�2 coth2 �

� kSf�T kT�1(�) coth
2 � = kSfk� coth2 � � 6 coth2 �;

and proof is completed. �

Example. Let R be a hyperbolic Riemann surface and � : U ! R be a holomor-

phic universal covering map of R: For simplicity, suppose that R is of (topologically)

�nite type. Then, by Corollary 4.2,

kS�kU <1, �(�) > 0, R has no punctures.

Generally, if R has punctures, then kS�kU =1 by the same reasoning.

Secondly, we return to the case of a general hyperbolic domain D:
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Proposition 4.3. Let f be a meromorphic map on D with positive injectivity

radius � = �D(f ): Then kSfk(1)
D � 6 coth2 �:

Proof. We set A = coth�: Let z0 be an arbitrary point in D and K be the Poincar�e

disk fz 2 D; dD(z; z0) < �g: Then, we note that f is univalent in K: Set r0 =

infz2@K jz � z0j; r1 = infz2@D jz � z0j and �j = B(z0; rj) (j = 0; 1):

By the monotonicity, dD(z; z0) � d�1
(z; z0); and hence

� = inf
z2@K

dD(z; z0) � inf
z2@K

d�1
(z; z0) = inf

z2@K
arctanh

jz � z0j
r1

= arctanh
r0
r1
:

Thus we conclude that tanh� � r0
r1
; that is, r1

r0
� A = coth�: If we now let

� = B(z0; r) 2 DA(D); then r1
r
� A � r1

r0
; so r � r0: This yields that � � �0 � K;

and hence f� is univalent. So, the Nehari-Kraus theorem implies that kSfk� � 6:

Therefore kSfk(A)D � 6A2 = 6 coth2 �: The statement now readily follows from

Theorem 2.1 (b). �

Remark. Proposition 4.3 is, in some sense, a rough estimate because the in-

jectivity radius �D(f) is conformally invariant, while the norm of the Schwarzian

derivative is not.
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