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Abstract. In the present paper, we shall establish that IntS(� ) = T (� ) for any

Fuchsian group uniformizing a compact Riemann surface with nonempty boundary,
i.e., for any �nitely generated, purely hyperbolic Fuchsian group of the second kind,

where S(� ) denotes the Schwarzian derivative of all the � -equivariant schlicht holo-
morphic functions and T (� ) is the Teichm�uller space of �: We also include some
results concerning with IntS(� ) for general Fuchsian groups �:

x1. Introduction
Let � be an arbitrary Fuchsian group acting on the upper half plane H = fz 2

C; Imz > 0g: We donote by S(� ) the set consisting of the Schwarzian derivative
Sf of all the univalent meromorphic functions f on H with f �  = �() � f on
H for some group homomorphism � : � ! M�ob: Then it turns out that S(� )
is a bounded closed subset of the complex Banach space B2(H; � ) (see x2 for its
precise de�nition). It is an intersting topic to investigate how (the Bers model of)

the Teichm�uller space T (� ) is embedded in S(� ): Generally, T (� ) $ S(� ) holds.

In fact, �rst Gehring has shown that T (1) $ S(1) in [7], and later the author

proved in [14] that T (� ) $ S(� ) for any Fuchsian group � of the second kind.
Moreover, recently K. Matsuzaki showed in [9] the existence of certain in�nitely

generated Fuchsian groups � of the �rst kind such that T (� ) $ S(� ): But, it is a

still now di�cult problem to decide whether T (� ) = S(� ) for a �nitely generated
Fuchsian group � of the �rst kind. (We remark that this problem is equivalent
to the Thurston conjecture: any b-group is a boundary group of the Teichm�uller
spaces.)

On the other hand, Gehring has shown in [6] that IntS(1) = T (1): Furthermore
�Zuravlev showed in [17] that T (� ) is the zero component of IntS(� ) for an arbitrary
Fuchsian group �: Thus, it is naturally conjectured that IntS(� ) = T (� ) for any
�: In this direction, Shiga proved in [13] that the above conjecture holds if � is
�nitely generated Fuchsian group of the �rst kind, equivalently, if B2(H; � ) is �nite
dimensional.

The main theorem in this article (Theorem 2.1) is the claim that IntS(� ) = T (� )
for any Fuchsian group � uniformizing a compact (bordered) Riemann surface
with nonempty boundary, in other words, for �nitely generated, purely hyperbolic
Fuchsian group � of the second kind. In order to prove this theorem, we shall
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utilize Gehring's method in [6] with several localization techniques for overcoming
di�culties caused by the group action. Here we remark that our proof does not
depend on �Zuravlev's result.

The proof of the main theorem divides into several steps as follows. In x2, we
prepare terminologies and notations for later use, and state the main theorem and
some lemmas. Let ' 2 IntS(� ) and f be a univalent function such that Sf = ':
To say that ' 2 T (� ); we have to show essentially that D = f(H) is a quasidisk,
or equivalently, D is a locally connected John domain (if D is bounded). In x3, we
will show that D is locally connected, but \locally" in 
(G) where G = f�1�f; �
is an arbitrary Fuchsian group (Proposition 3.1). Roughly speaking, in the \island"
D; there is no very deep bay. In fact, if such a deep bay exists, one can construct a
G-equivariant meromorphic map h on D with small Schwarzian which shuts its inlet
(thus, is not univalent) by bending D a little, and this will leads to a contradiction.

As a corollary of this result, we see that @D = @(bC nD); in particular, bC nD 6= ;;
for any ' 2 IntS(� ):

In x4, we also see thatD is a John domain, at least \locally" in
(G) (Proposition
4.1). Roughly speaking again, there is no peninsula so much constricted in the island
D: In fact, if such a peninsula, one can construct a G-equivariant meromorphic map
h on D with small Schwarzian which touches the opposite shore ofD by lengthening
a narrow part of the peninsula, and this also will lieads to a contradiction. In both
steps, we shall accomplish the construction of g as follows: �rst, we construct a
G-equivariant quasi-analytic (in fact, quasiconformal locally, but not necessarily
injective) map h with small deformation which satis�es the same properties as g
except the holomorphy. By appropriate construction of h; the Beltrami coe�cient
� of h�1 can be well-de�ned, so we can choose w� �h as g; where w� is a �-qc map

of bC (here, for example, � was extended to 0 in h(D)c). For estimation of the norm
of the Schwarzian derivative of w� � h; we shall utilize the \local norm technique"
as in [16].

In x5, for a Fuchsian group uniformizing a compact bordered Riemann surface
with nonempty boundary, we prove that the boundary of D=G in 
(G)=G is a
disjoint union of quasi-analytic curves by invoking the annular covering argument.
Thus, in particular, the induced conformal map F : H=� ! D=G by f can be

naturally extended to a homeomorphism H=� ! D=G: Furthermore, in x6, F turns

out to be extended to a quasiconformal map eF : 
(� )=� ! 
(G)=G which can

be lifted to a quasiconformal map ef : 
(� ) ! 
(G): This fact follows essentially
from the existence of a G-equivariant quasiconformal reection with respect to @D:

Since ef may be continued to a quasiconformal self-map of bC; it has shown that
' = Sf 2 T (� ):

Finally, the author would like to express his sincere gratitude to Prof. M.
Taniguchi for encouragement and worthy advices.

x2. Preliminaries and the main theorem

In this section, we shall �x the terminologies needed below and state related
facts and the main theorem. As a general reference, we refer to the textbook [10]
by S. Nag.
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Projective structures on a Riemann surface. Let R be a hyperbolic Riemann
surface and p : H ! R be a holomorphic universal covering of R; where H = fz 2
C; Imz > 0g is the upper half plane. A projective chart on the Riemann surface R
is a complex chart on R such that the transition functions are (locally) restrictions
of M�obius transformations. Two projective charts on R are equivalent if their union
is also a projective chart. Equivalence classes of projective charts on R are called
projective structures on R:

Let � be a projective structure on R represented by a chart f � : U� ! V�;� 2
Ag: Set eU� := p�1(U�); and write e � =  � � h on eU� for � 2 A: Then (eU�)�2A
is an open covering of H: De�ne  �� =  � �  ��1 on  �(U� \ U�); then  �� is
a restriction of M�obius transformation on each component of  �(U� \ U�); by the
very hypothesis. And we have

(2.1) e � =  �� � e � on eU� \ eU�
for any �; � 2 A:

Here, we recall some of the properties of the Schwarzian derivative. The Schwarzian
derivative Sf of a non-constant meromorphic function f on a plane domain is de-
�ned by

Sf =

�
f 00

f 0

�0
� 1

2

�
f 00

f 0

�2

:

Sf is holomorphic at a point if and only if f is locally schlicht (=univalent) at

the point. And, Sf = 0 on a domain D � bC if and only if f is a restriction of a
M�obius transformation. Further, if f and g are meromorphic functions and if f � g
is de�ned, then the following very important formula (the Cayley identity) holds:

(2.2) Sf�g = (Sf ) � g � (g0)2 + Sg:

By the above properties and (2.1), we obtain that

S
e �

= S
e �

on eU� \ eU�
for any �; � 2 A: Thus a holomorphic function ' : H! C is well-de�ned by

' = S
e �

on eU�
for any �:Moreover, by the relation (2.2), we can see that the holomorphic function
' satis�es the following functional equations:

(' � ) � (0)2 = '

for all  2 �; where � < M�ob is the covering transformation group of p : H ! R:
The above ' is called a holomorphic quadratic di�erential for � on H: We will
denote by Q(H; � ) the set of all the holomorphic quadratic di�erentials for � on
H:
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Conversely, let a holomorphic quadratic di�erential ' for � on H be given.
Consider the following homogeneous linear ordinary di�erential equation:

(2.3) y00 +
1

2
'y = 0 on H:

Since H is simply connected, there exists a pair of fundamental solutions (y0; y1)
on H uniquely determined by the initial condition

(2.4) y0(i) = 0; y00(i) = 1 ; y1(i) = 1; y01(i) = 0:

Noting that y00y1 � y0y
0
1 � 1; we obtain that f' := y0=y1 satis�es the following

conditions:

(2.5) Sf' = ' on H;

(2.6) f'(z) = (z � i) +O(jz � ij3) as z ! i =
p�1:

It should be remarked that f' : H ! bC is uniquely determined by the above
conditions (2.5) and (2.6).

Let  2 � be represented by (z) = az+b
cz+d for some (ac

b
d) 2 SL(2;C): Convention-

ally, we write (0)�1=2 = cz + d; then eyj = (yj � )(0)�1=2 becomes a solution of
(2.3) again. (eyj may be considered as the analytic continuation of the solution yj
along with a path from i to (i):) Therefore ey0 and ey1 are uniquely represented by
linear combinations of y0 and y1 as

(2.7)
ey0 = Ay0 +By1ey1 = Cy0 +Dy1;

where A;B;C and D are constants. Since ey00ey1 � ey0ey01 � 1; (AC
B
D) 2 SL(2;C):

We denote by �'() the M�obius transformation Az+B
Cz+D ; which is independent of

the choice of signature of (0)�1=2: The group homomorphism �' : � ! M�ob is
called a holonomy homomorphism associated with ': By (2.7), we have the following
transformation formula of f' :

(2.8) f' �  = �'() � f' for all  2 �:

Such f' as Sf' = ' is called a developing map of '; and also the pair (f'; �') is
called a deformation of the Fuchsian group �:

In this article, we will call ' a schlicht projective structure if its developing map
f' is schlicht(=univalent) in H: Let S(� ) denote the set of totality of schlicht
projective structures for � on H: The Nehari-Kraus theorem states that if f' is
schlicht in H then

k'kH = sup
z2H

j'(z)j(2Imz)2 � 6:

So it is natural to consider a complex Banach space B2(H; � ) = f' 2 Q(H; � );
k'kH <1g: Of course S(� ) � B2(H; � ):
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By Hurwitz's theorem, it turns out that S(� ) is closed in B2(H; � ):
On the other hand, S(� ) is closely related to the Teichm�uller space T (� ) of �;

where (the Bers model of) the Teichm�uller space T (� ) of � is de�ned by

T (� ) = f' 2 Q(H; � ); f' can be extended to a � -compatible

quasiconformal homeomorphism of bCg;
where we say that f is � -compatible if f �  � f�1 2 M�ob for all  2 �:

It is well-known fact that T (� ) is a bounded connected open set of B2(H; � ):
Clearly T (� ) � S(� ); and it is conjectured that T (� ) = IntS(� ); where IntS(� )
denotes the interior of S(� ) in the Banach space B2(H; � ):

Now we state the main theorem, which is a generalization of Gehring's result in
[6].

2.1. Main Theorem. If � is a �nitely generated, purely hyperbolic Fuchsian
group of the second kind, then T (� ) = IntS(� ):

2.2. Remark. For a Fuchsian group � acting on H; the followings are mutually
equivalent:

(i) � is �nitely generated, purely hyperbolic and of the second kind,
(ii) � is a Schottky group,
(iii) � is a uniformizing group of a compact bordered Riemann surface with

nonempty boundary, more presicely, � is the covering transformation group
of a holomorphic universal covering p : H ! R; where R is a compact
Riemann surface of genus g(� 0) with mutually closed topological disks
D1; . . . ;Dm removed (m � 1):

In case of (iii), we say that R is of conformal type (g; 0;m); and we should note
that such � is a free group of rank 2g +m� 1:

In the sequel, we are mainly concerned with the properties of a point in IntS(� )
for an arbitrary Fuchsian group �; or almost equivalently, the shape of the domain
D = D' = f'(H) for ' 2 IntS(� ):

First, for ' 2 S(� ); the holonomy homomorphism �' : � ! M�ob is injective
and G = �'(� ) < M�ob acts on D = f'(H) discontinuously, therefore D � 
(G);
in particular, G is a Kleinian group. Furthermore, for ' 2 IntS(� ); �' : � ! G
enjoies the following property.

2.3. Lemma (cf.[15]). For ' 2 IntS(� ); the holonomy homomorphism �' : � !
G = �'(� ) is a type-preserving isomorphism.

Proof. First, we remark that the mapping ' 7! tr2�'() is holomorphic onB2(H; � );
where  is a �xed element of � and tr2g = (a+ d)2 if the M�obius transformation g
is represented by g(z) = az+b

cz+d with ad� bc = 1:

Second, if  is parabolic or elliptic, i.e., tr2 = 4 cos2 �n for some natural number

n; then tr2�'() = 4 cos2 �n for ' 2 T (� ) by quasiconformal homogeneity of T (� ):

Since T (� ) is open in B2(H; � ); the identity theorem implies that tr2�'() =
4 cos2 �n for all ' 2 B2(H; � ): Thus �' preserves types elliptic and parabolic.

Finally, let  2 � be hyperbolic. Since �' is injective for ' 2 S(� ); �'() must
not be elliptic. Suppose that �'() becomes parabolic, i.e., tr2�'() = 4; for some
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'0; the identity theorem produces again that tr2�'() is a nonconstant map on V;
so the image of V under this map is open neighborhood of 4. In particular, for
su�ciently large n 2 N there exists a point '1 in V such that tr2�'1() = 4 cos2 �n ;
which is a contradiction. �

2.4. Remark. The proof of the above lemma in [15] relies upon the �-lemma.
The author has learned the idea in the above proof from H. Shiga.

Hyperbolic sup norm. For later use, we shall �x several notations in the more
general situation. LetD be a hyperbolic simply connected domain with the Poincar�e
metric �D(z)jdzj of negative constant curvature �4; and let G be a Kleinian group
acting on D (, which is not necessarily a component of 
(G)): The complex Banach
space B2(D;G) is de�ned as the set

f' : D ! C : holomorphic map; (' � L)(L0)2 = ' for all L 2 G; k'kD <1g;
where k'kD = supz2D j'(z)j�D(z)�2: If G is the trivial group, simply we write
B2(D) = B2(D;G): Let f : H ! D be a conformal map, then by the conformal
invariance of the Poincar�e metric, we have

(2.9) k(' � f)(f 0)2kH = k'kD for ' 2 B2(D):

G-Schwarzian domains. Under the above preparations, we shall state a charac-
terization of such a domain D obtained as f'(H) for some ' 2 IntS(� ):

2.5. Lemma. Let � be an arbitrary Fuchsian group acting on H: For ' 2 S(� ); '
belongs to IntS(� ) if and only if the domain D = f'(H) has the following property:
There exists a positive constant " > 0 such that any non-constant meromorphic map

g : D ! bC with Sg 2 B2(D;G)" must be univalent in H; where G = �'(� ) and
B2(D;G)" = f 2 B2(D;G); k kD < "g:

When a Kleinian group G acts on a hyperbolic domain D (not necessarily sim-
ply connected), D is called a G-Schwarzian domain with constant " if the above
property holds.

Proof. We write f = f' for short. By (2.2) and (2.9) we obtain the equality

kSg�f � 'kH = kSgkD;
which implies what we need here. �

Next we refer to the local quasiconformal homogeneity of IntS(� ); which plays
an important role in x4. The proof of the following proposition is deeply indebted
to a group equivariant version of the �-lemma.

2.6. Proposition ([15]). Let V be a connected component of IntS(� ): For any

'1; '2 2 V; there exists a quasiconformal self-map F of bC with the following prop-
erties:

(1) f'2 = F � f'1 on H;
(2) �'2() = F � �'2() � F�1 on bC for all  2 �:
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An estimate of the hyperbolic sup norm. In what follows, it becomes impor-
tant to estimate the magnitude of the hyperbolic sup norm k'kD ; and so we now
give a method to controle the norm by the another (relatively) local data easy to
treat. Let A 2 [1;1) be a constant and D a proper subdomain of C: De�ne DA(D)
by the collection of such disks B(z0; r) = fz 2 C; jz � z0j < rg as B(z0; Ar) � D:

In this article, an orientation-preserving homeomorphism (or, non-constant con-
tinuous map) f : D1 ! D2 shall be called, conventionally, a k-quasiconformal map
(or, k-quasi-analytic map, respectively) where k 2 [0; 1) is a constant if f has
locally L2-derivatives such that j@�zf j � kj@zf j almost everywhere in D1: A quasi-
conformal map is often called a qc map, for short. And, we denote here by �[f ] the
Beltrami coe�cient @�zf=@zf of quasiconformal map (or, quasi-analytic map) f:We
remark that, since @zf 6= 0 a.e., �[f ] is well-de�ned. Thus, f is k-qc if and only if
k�[f ]k1 � k:We should remark that such a f is ordinarily called K-quasiconformal
where K = 1+k

1�k 2 [1;1); and this terminology has a adovantageous property that
the composition map f1 � f2 is K1 � K2-qc if f1 is K1-qc and f2 is K2-qc. With
these notations, we have the following

2.7. Proposition (cf.[2], [16]). Let D be a simply connected hyperbolic subdo-
main of C; A � 1 and k 2 [0; 1) be constants, and f be a non-constant meromorphic

function on D: If f j� can be extended to a k-qc map of bC for any � 2 DA(D);
then kSfkD � 96kA2:

Conversely, if kSfkD � 2kA2 then f j� can be extended to a k-qc map of bC for
any � 2 DA(D):

Bers projection. The measurable Riemann mapping theorem due to Ahlfors-Bers
claims that, for � 2 L1(C) with k�k1 < 1; there exists a unique quasiconformal

homeomorphism of bC; denoted w�; such that @�zw
� = �@zw

� a.e. and w�(0) =
0; w�(1) = 1; w�(1) =1:

Let G be a Kleinian group acting on an open set D � bC: We set E = C n
D: L1(E;G) and M (E;G) denote the complex Banach space f� 2 L1(C);� =
0 on D; (��L)�L0=L0 = � a.e. for all L 2 Gg and its open unit ball, respectively.
If G = 1; we shall write L1(E) = L1(E; 1) and M(E) =M(E; 1) for simplicity.

For � 2M(E;G); by the automorphy of �;w� conjugates G to another Kleinian
group, i.e., w�G(w�)�1 < M�ob; and w�jD is conformal since � = 0 on D: As
a result, the Schwarzian derivative of w�jD is well-de�ned and turns out to be a
(bounded) holomorphic quadratic di�erential for G on D: Particularly, when D is
simply connected domain of hyperbolic type, we denote by �D(�) the Schwarzian
derivative of w�jD ; and which is called the (generalized) Bers projection of � 2
M(E;G): As is well-known, �D : M(E;G) ! B2(D;G) is holomorphic and its
di�erential at the origin is represented as an integral operator (cf. [15]):

d0�D[�](z) = � 6

�

ZZ
E

�(�)

(� � z)4
d�d� (� = � + i�)

for every � 2 L1(E;G): In the special case that D = H; �H is the original
Bers projection and its image �H(M(Hc; G)) is the Teichm�uller space T (G) of the
Fuchsian group G:

As a corollary of the main theorem, we can verify the following:
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2.8. Corollary. Let D be a simply connected subdomain of bC of hyperbolic type
and E its complement. Suppose that a Schottky group G acts on D: Then the
following conditions are equivalent to each other:

(1) d0�D : L1(E;G)! B2(D;G) is surjective,
(2) d0�D : L1(E)! B2(D) is surjective, and
(3) D is a quasidisk.

Proof. As the claim (2) , (3) is a special case G = 1 of (1) , (3); it su�ces to
prove (1) , (3): The part (3) ) (1) is a direct consequence of the submersivity
of the generalized Bers projection (cf. Bers [3], Earle-Nag [5]). Thus we have
only to prove that (1) implies (3). First observe that if d0�D : L1(E;G) !
B2(D;G) is surjective then �D(M(E;G)) is a neighborhood of 0 in B2(D;G) (see,
for instance, [1] Proposition 2.5.9), that is, D is a G-Schwarzian domain. Let
f : H ! D be a Riemann mapping function of D and ' its Schwarzian derivative.
Then, the above observation shows that ' 2 IntS(� ) where � denotes the Fuchsian
group f�1Gf: Here we may assume that f = f': Since �' : � ! G is a type-
preserving isomorphism by Lemma 2.3, � is also a Schottky group. (Here note that
Schottky groups are characterized as the �nitely generated, purely loxodromic free
Kleinian groups by Maskit's theorem [8].) Therefore Theorem 2.1 produces that
IntS(� ) = T (� ): Thus we have shown that ' 2 T (� ); in particular, D = f'(H) is
a quasidisk. �

Quasidisks. Finally, we shall mention a characterization of the quasidisks, where
we recall that the quasidisk is de�ned as an image of the unit disk (or the upper

half plane) under a quasiconformal self-map of bC: Before stating the result, we shall
de�ne a distance (\path diameter distance" w.r.t. the Euclidean metric) �D on any
open subset D of C: For given two points z1; z2 in D; we set

�D(z1; z2) = inf
��D

diam�;

where the in�mum is taken over the paths � connecting z1 and z2 inD and diam� =
supw1;w22� jw1 �w2j: If w1 and w2 do not belong to the same component of D; we
de�ne �D(w1; w2) =1: As is easily seen, �D satis�es the axiom of distance except
that �D possibly takes the value 1: In particular, �D is certainly a distance on D
if D is a domain, and �D(z1; z2) � jz1 � z2j by de�nition.

A bounded simply connected domain D is called linearly connected if �D(z1; z2)
� Cjz1 � z2j for any z1; z2 2 D; or equivalently, for an arbitrary disk �; any two
points in D\� can be connected by a path in D\�A; where C and A is constants
(� 1) depending only on D and �A denotes fjz � z0j < Arg if � = fjz � z0j < rg:
It is worthy to know the fact that a linearly connected, bounded, simply connected
domain is always a Jordan domain (see Theorem 3.3 below).

A bounded simply connected domain D is called a John domain if, for an arbi-
trary disk �; any two points in D n�A can be connected by a path in D n�; where
A is a constant (� 1) depending only on D:

2.9. Theorem (cf. Gehring [6], Pommerenke [12]). A bounded simply con-
nected domainD is a quasidisk if and only ifD is a linearly connected John domain.
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x3. The first construction of non-univalent meromorphic map

with G-invariant small Schwarzian

In this section, we shall proceed in the more general situation. Let G be an
arbitrary Kleinian group, D be a G-invariant hyperbolic plane domain and p :

(G) ! R = 
(G)=G be the natural projection. Here we should remark that

D � 
(G); for bC nD is a G-invariant closed set containing at least 3 points, thusbC nD � �(G): In this section, it is our main job to prove the following

3.1. Proposition. Suppose that a Kleinian group G acts on a simply connected
plane domain D � C of hyperbolic type. If D is a G-Schwarzian domain with
constant " > 0; the following is valid for an appropriate constant B > 1 depending
only on " : for an arbitrary � 2 DB(
(G)) such that pj�B

is injective, any two
points in � \D can be joined by a path in �B \D:

Before stepping into the proof of the above proposition, we state a few corollaries.

3.2. Corollary. If a hyperbolic simply connected plane domain D is G-Schwarz-
ian for some Kleinian group G acting on D; and if �(G) 6= @D then @D = @D�

where D� is the exterior of D: In particular, D� 6= ;:
Proof of Corollary 3.2. Since �(G) � @D generally, the hypothesis implies that
there exists a point z0 in @D n�(G) = @D\
(G): The limit set �(G) is contained
in the closure of the orbit G � z0 of z0; on the other hand G � z0 is contained in @D\

(G); thus we obtain that �(G) � G � z0 � D \
(G): As a consequence, we have

@D \
(G) = @D: Clearly, @D� � @D; so it is su�cient to prove that @D\
(G) �
@D�: If not, since the free regular set �
(G) = 
(G) n felliptic �xed points of Gg
is dense in 
(G); there exists a point w0 2 @D\ �
(G)n@D�: Pick and �x another
point w1 in @D: Then, since w0 2 IntD \ �
(G); there exists an injective disk �
with center w0 and radius r > 0 such that � � D and w1 =2 �: Because @�1=2 \D
is dense in @�1=2; we can take �nitely many points a1; a2; . . . ; an 2 @�1=2\D such
that jaj � aj+1j < r

4B for j = 1; 2; . . . ; n where B is the constant in Proposition 3.1
and an+1 = a1:

Then the disk B(aj ; r=4) is included in the injective disk �; so Proposition
3.1 guarantees the existence of a path j � B(aj ; r=4) \ D connecting aj and
aj+1 (j = 1; . . . ; n): Therefore  = [nj=1j is a closed path in D separating w0

from w1; which contradicts the connectedness of @D: �

By the next characterization of Jordan domains, we obtain a further information
about G-Schwarzian simply connected domains.

3.3. Theorem (Newman [11] Chap.VI, Theorem 14.1 and Theorem 16.2). A

hyperbolic simply connected domain D � bC is a Jordan domain if and only if D is
uniformly locally connected, more precisely, for any positive number " there exists
a positive � such that, for all pairs of points x; y 2 D; d(x; y) < � implies that
�D(x; y) < "; where �D denotes the \path diameter distance" with respect to the

spherical metric of bC:
9



3.4. Corollary. Let D be a hyperbolic, G-Schwarzian, simply connected plane
domain for some Kleinian group G and D0 a Jordan domain such that @(D \
D0) � �
(G); where �
(G) denotes the free regular set of G; i.e., �
(G) = 
(G) n
f elliptic �xed points of Gg: Then, each component of D\D0 is a Jordan domain.

Proof. Since D \D0 is simply connected, it su�ces to show that each component
of D\D0 is uniformly locally connected, by Theorem 3.3. By Corollary 3.2, we can
assume that D and D0 are both bounded domains. Let 0 < " < diam@D \ @D0:
Since some compact neighborhood of @(D \D0) is contained in free regular set of
G; Proposition 3.1 yields that there exists a positive �1 such that �D(x; y) < "=2
for any x; y 2 D \D0 with jx� yj < �1:

On the other hand, Theorem 3.3 implies that there exists a positive �2 such that
�D0(x; y) < "=2 for any x; y 2 D0 with jx� yj < �2:

Let D1 be a component of D\D0 and x; y 2 D1 with jx�yj < �0 = minf�1; �2g:
Then, there exist paths 1; 2 from x to y such that 1 � D; 2 � D0 and that
diamj < "=2: And, since D1 is connected, there exists a path 0 in D1 from x to
y: Since D and D0 are both simply connected, 1 is homotopic to 0 in D and 2
is homotopic to 0 in D

0; and so 1 is homotopic to 2 in D [D0: Let  denote the
closed curve 1 � 2�1; then  is null homotopic in (@D\ @D0)c: Since diam < " <
diam@D\@D0;  bounds no points of @D\@D0: And therefore  is null homotopic
in � n (@D \ @D0) = (� n @D) [ (� n @D0); where � = fz 2 C; jz � xj < "=2g:
(Remark that j � �:)

Therefore by Alexander's lemma (to be stated below) x and y are known to be
connected by a path 3 in (� n @D) \ (� n @D0) = � n (@D [ @D0): Since 3 � D1

and diam3 < diam� = "; it is proved that D1 is uniformly locally connected. �

3.5. Alexander's lemma (cf. Newman [11]). Let O1 and O2 be open sets inbC: Suppose that x; y 2 O1 \O2 are connected by paths i in Oi (i = 1; 2): Then,
if 1[2 is null homotopic in O1[O2; x and y are connected by a path in O1\O2:

As the �nal corollary, we state a rather technical lemma which will be used in
x5.
3.6. Lemma. Under the same hypothesis of Proposition 3.1, let w0 be a point of
@D \ �
(G) and � � �
(G) an injective disk centered at w0: Then there exists a
connected open neighborhood V of w0 in � such that V \D is connected.

Proof. Consider the disk �1=B 2 DB(
(G)); where B is the constant which ap-
peared in Proposition 3.1. Let W be a connected component of � \ D which
includes a point in �1=B \D: Then, by Proposition 3.1, �1=B \D �W: Therefore,
we can adopt �1=B [W as a neighborhood V: �

Proof of Proposition 3.1. We choose B � C > 1 so that B � 6C and C �
9 + 211 � 33=": For some disk � = B(z0; r) 2 DB(
(G)); suppose that pj�B

is
injective and that two points z1; z2 2 � \D cannot be connected by any path in
�C \D (see Fig. 3.1). Let Dj be the connected component of �C \D containing
zj (j = 1; 2): Noting that D1 \ D2 = ; by the hypothesis, we can choose a

10



component of @�C nD1; say J; containing a point of D2: Then the closed interval
I = @�C n J has the following properties:

(1) D1 \ @�C � I;
(2) D2 \ I = ;; and
(3) @I � @D:

Furthermore, interchanging D1 and D2 if necessary, we may assume that

(4) jI j � 1
2 j�C j

where j � j denotes the arc length.

Fig. 3.1.

We assign the anti-clockwise orientation to I with initial point w0 and terminal
point w1: For a time, we shall consider the things by moving w0; w1 to 0;1 respec-
tively through the M�obius transformation Q(z) = z�w0

z�w1 : First, we remark that the

quantity � = Q(z2)=Q(z1) is near to 1: Precisely, for the principal value of � of
log �; we have the next

3.7. Lemma.

j�j � 4jw0 �w1j
(C � 1)2r

�
� 8C

(C � 1)2

�
; and j�j � 8

C � 1
:

Proof of Lemma 3.7. If we set u = z2�z1
z1�w0 and v = z2�z1

z1�w1 ; then we have juj; jvj �
2

C�1 (<
1
2 ); ju� vj � 2jw0�w1j

(C�1)2r and

j�j =
����log 1 + u

1� u

���� = ����Z v

u

d�

1 + �

���� � 2

Z
[u;v]

jd�j = 2ju� vj � 4jw0 � w1j
(C � 1)2r

:

Similarly, we have j�j � 2(juj+ jvj) � 8
C�1 : �

Let ! = Im� = arg� (j!j � � < �=4) and �0 be an angle of the ray Q(I)
with the positive real line, i.e., Q(I) = frei�0 ; 0 � r � 1g: In order to construct a
tame deformation such that its images of z1 and z2 coincide, we �rst de�ne a mapeT : bC! bC by

eT (z) =
8>>>><>>>>:
z exp( �=4+��=4�!�) (��=4 � � < �!)
�z (�! � � < �)

z exp(5�=4���=4 �) (� � � < 5�=4)

z (5�=4 � � < 7�=4)

where z = rei(�+�0); eT (0) = 0; and eT (1) =1; and further set T = Q�1 � eT �Q:
11



3.8. Lemma. eT and T are 8
C�9 -qc homeomorphism of bC:

Proof. If we set

t = t(rei(�+�0)) =

8><>:
�

�=4�! (��=4 < � < �!)
�4�=� (� < � < 5�=4)

0 ( otherwise );

then s := ir @
eT
@r =

@ eT
@� = i

t+i =
1

1�it a.e. and we have an estimate jtj � j�j
�=4�j�j � 2j�j

since j�j � 8
C�1 � 1

4 < �=4� 1
2 : Therefore,

j�[ eT ]j = ����s� 1

s+ 1

���� = ���� it

2� it

���� � jtj
2� jtj �

j�j
1� j�j �

8

C � 9
;

i.e., k�[T ]k1 = k�[eT ]k1 � 8
C�9 : �

If we set

eE1 = fz 2 C�; �0 � �=4 < argz � �0g;eE2 = fz 2 C�; �0 + � � argz < �0 + � + !g;

and Ej = Q�1( eEj) (j = 1; 2); then we can obtain the following.

3.9. Lemma. T (�C [ E1) � �C [ E1 [ E2 � �4C(� �B):

Proof. The �rst inclusion is clear by construction of T: Now we prove the second
inclusion. With a suitable normalization, we may assume that �C = B(0; 1) and
w1 = w0 = ei'0 (0 < '0 < �): The condition (4) implies that 0 < '0 � �=2: Thus
we observe that E1 is largest if '0 = �=2; in that case

(3.1) E1 � B(1;
p
2) � B(0; 1 +

p
2) � B(0; 4) = �4C :

Next, we shall consider E2: We may assume that ! > 0; for otherwise E2 = ;:
We need to calculate the radius � and the center c < 0 of the circle Q�1fargz =
�0 + ! mod�g (see Fig. 3.2). The elementary geometry tells us that

� sin('0 � !) = sin'0;

� cos('0 � !) = cos'0 � c;

and the latter implies that �c � �: By Lemma 3.2,

! � 4jw1 � w0j
(C � 1)2

=
8 sin'0
(C � 1)2

� '0
2
;

since C � 5: So, '0�! � '0=2; and therefore � = sin'0= sin('0�!) � sin'0= sin('0=2) =
2 cos('0=2) � 2: The above estimate enables us to deduce that E2 � B(c; �) �
B(0; �� c) � B(0; 2�) � B(0; 4) = �4C � �B : The proof is now comleted. �
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Fig. 3.2

Now, we shall go to the next step. We construct a locally injective quasi-analytic

map h : D ! bC as follows. Let  (z) = �(z)+i(�(z)+�0) be a branch of logQ(z) inD
such that � = 0 on I\D1; where we note that logQ(z) has the same imaginary part
on I \D1 by the property (1). Then, clearly �2� < � < �; �(z1) > 0; �(z2) < ��;
and j�(z1)� �(z2)� 2�j = jRe�j � 8

C�1 :
At �rst, we de�ne h on �B \D by

h(z) =

�
z if �(z) � ��=4;
T (z) if � �=4 � �(z):

Observe that h(�B \ D) � �B and h = id on @�B \ D by Lemma 3.9. Since
[L2GL(�B) is a disjoint union, we can extend h to a continuous map onD (denoted
the same letter h) as follows:

h(z) =

�
L � h � L�1(z) if z 2 L(�B \D) for some L 2 G;
z otherwise.

By construction, h satis�es the following.

(a) h is 8
C�9 -quasi-analytic,

(b) h � L = L � h for all L 2 G;
(c) h(z1) = h(z2);
(d) h(�B \D) � �B; and h(D n�B) \�B = ;:

And, a crucial point of the above construction is the validity of the following

3.10. Lemma. The Beltrami coe�cient �[h�1] on h(D) of the (local) inverse of
h is well-de�ned, i.e., it is independent of a particular branch of h�1:

Proof of Lemma 3.10. By equivariance of the de�nition of h and the property (d),
it is su�cient to prove only on �B : Let

E3 = fz 2 �B \D;#h�1(h(z)) > 1g; and

E4 = fz 2 �B \D; @�zh(z) 6= 0g:

First, h(E3) � T (fz 2 �B \ D;��=4 < �(z) < �g) \ fz 2 �B \ D;�2� <
�(z) < ��=4g � Q�1(f�2� < argz < ��g); by de�nition of h: On the other hand,
h(E4) � T (f��=4 � �(z) � �!g) � Q�1(f��=4 � argz � 0g); and so it follows
that h(E3) \ h(E4) = ;; this forces E3 \E4 = ;; i.e., h is holomorphic on E3: The
proof is �nished. �
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The above lemma says that the next de�nition:

� =

�
�[h�1] on h(D)

0 on C n h(D)

is well-de�ned and the property (a) and (b) imply that � 2M (C; G) and k�k1 �
8

C�9 (< 1): Now, we de�ne a quasi-analytic map g : D ! bC by g = w� � h; then
by the chain rule for quasi-analytic mappings, we can see that �[g] = 0 a.e. on

D: By virtue of Weyl's lemma for quasi-analytic mappings, g : D ! bC is known
to be meromorphic, moreover property (c) of h implies that g(z1) = g(z2); that
is, g is not univalent. By the fact that � 2 M(C; G); w� transforms the Kleinian
group G to another one by conjugation, thus g does so, in other words, Sg(z)dz

2 is
G-invariant.

Finally, we shall give an estimate of the hyperbolic-sup norm of Sg which will
lead to a contradiction.

Before into the �nal step, we prepare some lemmas. The proof of the �rst is
quite elementary (see [16] Proof of Proposition 2.4).

3.11. Lemma. For any constant A � 1; the following is valid. If �0 2 DA(D) and

if L 2M�ob satis�es that A(D) � C then L(�0) 2 DA0(D) where A0 = A+A�1

2 :

3.12. Lemma. Let E = fz 2 D;��=4 < �(z) < �!g and A � 3 be a constant.
Then, for �0 2 DA(D) such that �0 \ E 6= ;; h coincides with T on �0:

Proof of Lemma 3.12. We may assume that �C = B(0; 1): Suppose that �0 =
B(c; �) 2 DA(D) satis�es �0 \E 6= ;: Then clearly �5�=4 < � < ��! on �0: And
we note that

(3.2) A� � jc� wij (i = 0; 1):

from the assumtion and the fact that wi 2 @D: Pick a point � from �0 \ E; then
jc� �j < �; j� � w1j � diamE � diamE1 � 2

p
2 and j�j < 1 +

p
2 by (3.1). Hence,

A� � jc � w1j � jc � �j + j� � w1j < � + 2
p
2; thus we have � � 2

p
2

A�1 �
p
2: Since

jcj � jc��j+j�j < �+(1+
p
2); we have that�0 � B(0; jcj+�) � B(0; 1+

p
2+2�) �

B(0; 6) � �B : Thus we need only to prove that �0 \E0 = ; where E0 = Q(�1fz 2
C�;�5�=4 < argz < �3�=4g) = Q�1(fz 2 C�; 3�=4 < argz < 5�=4g):

Suppose that �0 \ E 0 6= ;: We may assume that jw0 � cj � jw1 � cj: Let C1 =
fz; jz � a1j = r1g and C2 = fz; jz � a2j = r2g denote the circles including circular
arcs 1 = Q�1(f�; arg� � �0 = ��=4g) and 2 = Q�1(f�; arg� � �0 = �3�=4g);
respectively (where C2 is possibly a line). Remark that, by assumption, 1 and 2
perpendicularly intersects at the two points w0 and w1 and that j \ @�0 6= ; for
j = 1; 2:

Let �j denote the intersection point of Cj and the ray starting from aj and
passing through c for j = 1; 2: If �j 2 Cj n j ; then A� � jc�w0j = dist(c; 2) < �;
this is impossible. Thus we conclude that �j 2 j ; and hence we have

(3.3) jc� �j j = dist(c; j) < � for j = 1; 2:

14



Fig.3.3 : Case 1

Now let cj be the orthogonal projection of the point c to the line through w0

and aj (j = 1; 2):
Case 1: W = Q�1(f�;�3�=4 < arg���0 < ��=4g) is unbounded (see Fig. 3.3).
In this case, we have jcj�w0j � jc��j j < � for j = 1; 2: Thus we get an estimate

that
jc� w0j =

p
jc1 �w0j2 + jc2 �w0j2 <

p
2�:

By (3.2), we have A� <
p
2�; which is a contradiction.

Case 2: W is bounded.
We may assume that c is in the inside of C1 and in the outside of C2 (see Fig.

3.4).

Fig.3.4 : Case 2

Then, as in Case 1, we know that

(3.4) jc2 �w0j < �:

Next, because jc� a1j � jc� c1j+ jc1� a1j = jc2 �w0j+(r1 � jc1 �w0j); we obtain
that

(3.5) jc1 � w0j � jc2 � w0j+ r1 � jc� a1j = jc2 � w0j+ jc� �1j < 2�

by (3.3) and (3.4). So, by (3.4) and (3.5), we have

jc� w0j =
p
jc1 �w0j2 + jc2 �w0j2 <

p
5�:

Combined with (3.2), we can deduce that A� <
p
5�; which contradicts the hy-

pothesis that A � 3: �

Proof of Propositon 3.1 (continued). At �rst, we shall examine the local qc exten-
sibility of h: Let A � 6 and � 2 DA(D): If � \ L(E) 6= ; for some L 2 G; then
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L�1(�) \ E 6= ; and, by Lemma 3.11, L�1(�) 2 DA0(D) where A0 = A+A�1

2 � 3:

So, Lemma 3.12 implies that h = T on L�1(�); i.e., h = L�h�L�1 = L�T �L�1 on
�: From Lemma 3.8, we know that hj� can be extended to a k-qc homeomorphism

L � T � L�1 of bC; where k = 8
C�9 :

Otherwise, �\([L2GL(E)) = ;; so h is a restriction of a M�obius transformation

on �: Thus, in any case, hj� can be extended to a k-qc homeomorphism of bC: On
the other hand, w� is originally a global k-qc map, and hence gj� = w� � hj�
can be extended to a k0-qc homeomorphism of bC; where 1+k0

1�k0 = ( 1+k1�k )
2: By quite

easy calculations, we have k0 = 2k
1+k2 � 16(C�9)

(C�9)2+64 � 16
C�9 ; therefore combined with

Lemma 2.7, we obtain an estimate

kSgkD � 96A2k0 � 96 � 62 � 16

C � 9
< ":

From the �rst hypothesis, g must be univalent on D; which contradicts the fact that
g(z1) = g(z2): Thus, z1 and z2 2 � \D must be connected by a path in �C \D;
therefore, in �B \D: �

x4. The second construction of non-univalent meromorphic map

with G-invariant small Schwarzian

In this section, we shall make another construction of non-univalent meromorphic
map, which is, in a sense, a dual of the one in x3. At �rst, we prove a rather technical
proposition, which holds for general Fuchsian groups of the second kind.

4.1. Proposition. Suppose that a Kleinian group G acts on a simply connected
plane domain D � C of hyperbolic type and let p : 
(G)! 
(G)=G be the natural
projection. If D is a G-Schwarzian domain with constant " > 0; the following
is valid for an appropriate constant C > 1 depending only on " : for each disk
� 2 DC(
(G)) such that E � 
(G) and that pjE is injective where E = D nD0

and D0 is some connected component of D n� (that is the \main" component in
a sense), any two points z0; z1 2 D n�C can be joined by a path in D n�:

Proof. Let C > 5 + 210 � 3 � 52=" and � 2 DC(
(G)); D0 and E as in the
statement above. Suppose that some two points z1; z2 2 D n�C cannot be joined
by any path in D n�: We denote by Dk the connected component of D n� which
contains zk for k = 1; 2: By the assumption, D1 6= D2: Let I be the connected
component of @� nD1 containing points of @�\D2: Obviously @�\D2 � I; and
@� \D0 � I or @� \D0 � @� n I: Replacing I by @� n I and interchanging D1

and D2 if necessary, we may assume that

(4.1) @� \D1 � @� n I; @� \D2 � I; and @� \D0 � I:

We assign the anti-clockwise orientation to I; and let w0; w1 be the initial and
terminal point of I; respectively. Note here that wi 2 @D by construction. Now we
introduce a M�obius transformation Q(z) = z�w0

z�w1 : Let � be the principal value of

log �; where � = Q(z2)=Q(z1): By Lemma 3.2, we know that j�j � 8
C�1 : We de�ne
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a quasiconformal map eTt : bC! bC for 0 � t � 1 by

eTt(z) =
8>>>><>>>>:
z exp ( ���=3�=3 t�) (�=3 � � < 2�=3)

z exp (t�) (2�=3 � � < 4�=3)

z exp (5�=3���=3 t�) (4�=3 � � < 5�=3)

z (0 � � < �=3 or 5�=3 � � < 2�)

where z = rei(�+�0) and �0 is an angle of the ray Q(I) with the positive real line.

Further, let Tt = Q�1 � eTt � Q for 0 � t � 1: By the same way as in the proof of
Lemma 3.8, we have the following

4.2. Lemma. eTt and Tt are 4t
C�5 -qc homeomorphism of bC for 0 � t � 1:

Let  (z) = �(z) + i(�(z) + �0) be a branch of logQ(z) in D such that � = 0 on
@D0 \ D (� I): Then it is clear that �� < � < 2� on D; � < 0 on D0 [ D1 and
that � > � on D2: First, de�ne ht(z) for z 2 E = D nD0 by the rule

ht(z) =

8><>:
z if �(z) < 0;

Tt(z) if 0 � �(z) < �;

Q�1(et�Q(z)) if � � �(z):

Noting that [L2GL(E) is a disjoint union by assumption, next we extend ht to
a mapping on [L2GL(E) (still written by the same notation ht) as follows: ht =
L � ht � L�1 on L(E): Since h(z) = z for any z 2 @D0 \D by the choice of �; we
can continuously extend ht by di�ning as the identity map on D n [L2GL(E): By
(4.1), these quasi-analytic mappings ht : D ! bC (0 � t � 1) satisfy the following
conditions.

(a) ht is
4t
C�5 -quasi-analytic,

(b) ht � L = L � ht for any L 2 G;
(c) h1(z1) = h1(z2) = z1; and
(d) ht(z) continuously depends on (t; z) 2 [0; 1]�D:

Now we let J = ft 2 [0; 1];9L 2 G n f1g s.t. ht(E�) \ L(ht(E�)) 6= ;g; where
E� = IntE = D nD0:

4.3. Lemma. For any t 2 [0; 1] n J; the following Beltrami coe�cient �t is well-
de�ned:

�t =

�
�[ht

�1] on ht(D);

0 elsewhere.

Proof of Lemma 4.3. Set E1 = fz 2 D;�=3 � �(z) � 2�=3g (� �): Then, by
de�nition, ht is holomorphic o� [L2GL(E1): Therefore, it is su�cient to show that

(4.2) ht(E1) \ ht(D n E1) = ;:
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Since ht = Tt on � \ E; ht is injective in � \ E; so we have

(4.3) ht(E1) \ ht(� \ E nE1) = ;:

Noting here that jarg(eTt(z)=z)j � jarg(et�)j = tjIm�j � 8t
C�1 < �=6; we have

jarg(Q(ht(z))=Q(z)j < �=6 for all z 2 E: So that, we obtain

(4.4) Q(ht(E1)) � f�;�=6 < arg� � �0 < 5�=6g; and

(4.5) Q(ht(E n�)) � f�; 5�=6 < arg� � �0 < 13�=6g:

In particular, we have

(4.6) ht(E1) \ ht(E n�) = ;:

By (4.3) and (4.6), we can see that

(4.7) ht(E1) \ ht(E n E1) = ;:

Further (4.4) implies that

(4.8) ht(E1) \D0 = ;

sinceQ(D0) � f�;�� < arg� < 0g: Noting that ht = id onD0
0 := D0n[L2Gnf1gL(E);

we have the following equality

ht(D n E1) = ht(E n E1) [ ht(D0) = ht(E nE1) [D0
0 [

�[L2Gnf1gL(ht(E))� :
Combining ht(E1)\

�[L2Gnf1gL(ht(E))� = ; with (4.7) and (4.8), we obtain (4.2),
thus we �nish the proof. �

Let t 2 [0; 1] n J: By property (a) and (b), one can see that �t 2 M(C; G) with
k�tk1 � 4t

C�5 : We de�ne a quasi-analytic map gt : D ! bC by gt = w�t � ht: Then,
it follows that gt is meromorphic, for �[gt] = 0 a.e. Since gt �L = �t(L) � gt; where
�t(L) = w�t � L � (w�t)�1 2 M�ob for all L 2 G; the Schwarzian derivative of gt is
G-automorphic. Now we shall estimate kSgtkD:
4.4. Lemma. Let A � 5; then ht = Tt on �

0 for any �0 2 DA(D) with �0 \E1 6=
;:
Proof of Lemma 4.4. Let �0 = B(c; r) 2 DA(D) such that �0 \ E1 6= ;: Then it
su�ces to show that �0 � �: Suppose that �0 * �; then one and only one of the
following happens:

(1) I \ @�0 6= ; and Q�1(f� : arg� � �0 = �=3g) \ @�0 6= ;:
(2) (@� n I) \ @�0 6= ; and Q�1(f� : arg� � �0 = 2�=3g) \ @�0 6= ;:
In both cases, there are two circular arcs 1 and 2 with the following properties.

(a) j is a subarc of a circle centered at aj with endpoints w0 and w1;
(b) j \ @�0 6= ; for j = 1; 2; and
(c) 1 intersects 2 at wi with angle �=3 for i = 0; 1:
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Without loss of generarity, we may assume that jw0 � cj � jw1 � cj: Since �0 2
DA(D) and w0 2 @D we have

(4.9) jw0 � cj � A�:

Now let �j be the intersection point of the circle Cj and the ray starting from aj
and passing through c; where we should note that c 6= aj by (4.9). Moreover by (b)
and (4.9), we can see that �j 2 j and jc� �j j = dist(c; j) < �; so we have that

(4.10) j�j � w0j � jw0 � cj � j�j � cj > (A� 1)�:

Let mj be the midpoint of j ; that is, mj 2 j such that jmj � w0j = jmj � w1j:
By the property (c), the elementary geometry tells us that \m1w0m2 = �=6: Set
� = \�1w0�2 2 (0; �); then we can verify that

(4.11) � � �=6:

In fact, this is evident if the region W bounded by 1 [ 2 is covex. Next, we
consider the case that W is not convex. We may assume that m2 is contained in
the inner domain of the circle C1 (see Fig. 4.1).

Fig. 4.1

Let  j = \mjaj�j 2 (0; �) for j = 1; 2: Then  1 = \m1a1c � \m1a2c =  2:
Noting that \mjw0�j =  j=2; thus we have that � = �=6 + ( 1 �  2)=2 � �=6:

Now the cosine formula says that

j�1 � �2j2 = j�1 � w0j2 + j�2 �w0j2 � 2j�1 � w0jj�2 � w0j cos �
� j�1 � w0j2 + j�2 �w0j2 � 2j�1 � w0jj�2 � w0j cos�=6 (by (4.11))

� (A� 1)2�2(2�
p
3) (by (4.10)) :

On the other hand, j�1 � �2j � j�1 � cj + j�2 � cj < 2�; so we obtain thatp
2�p

3(A � 1)� < 2�; that is, A < 1 + 2=
p
2�p

3 < 5: This contradicts the
assumption that A � 5: �

Proof of Proposition 4.1 (continued). Take A � 1 such that A0 = A+A�1

2 � 5:
Let �0 2 DA(D): If �0 \ ([L2GL(E1)) = ;; then htj0� is a restriction of a M�obius
transformation by construction. If �0 \ ([L2GL(E1)) 6= ;; then

�0 \ L�1(E1) 6= ; for some L 2 G:
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Since L(�0) \ E1 6= ;; Lemma 4.4 yields that ht = Tt on L(�0); hence ht =
L�1 �ht �L = L�1 �Tt �L on �0: Consequently, htj�0 can be extended to a 4t

C�5 -qc
map by Lemma 4.2. In any cases, htj�0 can be extended to a global k-qc map,
where k = 4t

C�5 : Because w
�t is originally a k-qc map, gj�0 can be extended to a

k0-qc map, where 1+k0

1�k0 = (1+k1�k )
2: Since k0 = 2k

1+k2 � 2k = 8t
C�5 ; by Proposition 2.7,

we obtain an estimate

kSgtkD � 96A2k0 � 96A2 � 8t

C � 5
:

By assumption on C; we have kSgtkD < " if we take A = 10; for exmaple, in the
above. Let f : H ! D be a Riemann mapping of D; then the above implies that
Sgt�f belongs to the ball centered at Sf of radius " in B2(H; � ) where � = f�1Gf:
Remarking here the ball above is contained in S(� ) by the assumption onD; we can

deduce from Proposition 2.6 that there exists a global qc extension egt : bC! bC of gt
such that egt�L = �t(L)�egt on bC for all L 2 G: (Or, by utilizing a group equivariant
version of the ultimate �-lemma due to Slodkowski (cf. Earle-Kra-Krushkal [4]), we
have directly this result.) Therefore ht also has a global qc extension (w�t)�1 � egt;
in particular, the next lemma follows.

4.5. Lemma. For any t 2 [0; 1] n J; ht : D ! bC can be extended to a homeomor-

phism eht of bC commuting with G:

Now suppose that J = ;; then the above lemma implies that h1 : D ! bC is
injective, which contradicts the property (c). So, J must be nonempty. Let t0 be
the in�mum of J: Since J is open in (0; 1]; we remark that t0 2 [0; 1]nJ; in particular
Lemma 4.5 is applicable to t0: Let tn (n = 1; 2; . . . ) be a sequence in J converging
to t0: As tn 2 J;

(4.12) htn(E
�) \ htn(Ln(E�)) 6= ; for some Ln 2 G n f1g:

If there exists an L 2 Gnf1g such that L = Ln for in�nitely many n's. Then, by the

property (d) and the fact that E � 
(G); (4.12) forces that eht0(E)\eht0(L(E)) 6= ;;
which is impossible because E \ L(E) = ; and eht0 : bC ! bC is injective. Thus, we
may assume that Ln is a distinct sequence in G n f1g: In this case, as is easily

seen from (4.12), eht0(E) \ �(G) 6= ;; which is a contradictory to the fact that

E \ �(G) = ; and that eht0(�(G)) = �(G):
Anyway, contradictions are deduced, which is caused by the falsity of the as-

sumption that z1; z2 2 D n�C cannot be joined by any path in D n�: �

x5. The boundary of R0 = D=G is a disjoint union

of quasi-analytic curves

Let � be an arbitrary Fuchsian group and ' 2 IntS(� ): We denote by R the
(possibly disconnected) Riemann surface 
(G)=G where G = �'(� ):

In this sectoin, we shall study the relative boundary @R0 of the subdomain R0 =
D=G = f'(H)=G in R: Our main aim here is to prove that @R0 is a disjoint union of
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quasi-analytic curves under the suitable hypothesis. To this end, we shall introduce
a notion of the annular covering. Let � be a homotopically nontrivial simple closed
curve in a hyperbolic Riemann surface R: Let � : H! R be a holomorphic universal
covering of R; and  an element of the covering transformation group �0 <M�ob of
� which covers �; i.e., the terminal point of a lifting curve e� of � with respect to �
equals to (z0) where z0 is the initial point of e�:

As is easily seen, the quotient Riemann surface H=hi is conformally equivalent
to an annulus A = fz 2 C; c < jzj < 1g; where 0 � c < 1 satis�es the relation
cosh(�2= log c) = jtrj=2; which is not so signi�cant below.

Let �1 : H ! A be a holomorphic covering with the covering transformation
group hi: The induced holomorphic covering map q = q� : A ! R such that � =
q ��1 is called an annular covering with respect to �: By construction, �̂ = �1(e�) is
the unique closed lift of �; in other words, any other lift of � than �̂ is not closed.
Using the tool above, we shall prove the following result.

5.1. Theorem. Let � be an arbitrary Fuchsian group of the second kind acting on
the upper half planeH: For ' 2 IntS(� ); letG = �'(� ); D = f'(H); R = 
(G)=G;
and R0 = D=G: If a connected component � of @R0 is compact and contains no
branch points of the natural projection p : 
(G) ! R; then � is a quasi-analytic
curve and a one-sided boundary component.

Where, the quasi-analytic curve means the quasiconformal homeomorphic image
of the circle.

5.2. Corollary. In particular, when � is a �nitely generated, purely hyperbolic
Fuchsian group of the second kind, the relative boundary @R0 of R0 is a disjoint
union of �nitely many quasi-analytic curves, and thus the conformal map F' : S0 !
R0 induced by f' : H ! D; ' 2 IntS(� ); naturally extends to a homeomorphism
F' : S0 ! R0; where S0 = H=� and S0 is its closure in S = 
(� )=�; in other words,
f' : H! D naturally extends to a homeomorphism f' : H n �(� )! D n �(G):
Proof of Corollary 5.2. By the hypothesis, R is compact, thus so @R0 is. Therefore
the former part of the above assertion directly follows from Theorem 5.1. In partic-
ular, @S0 and @R0 consist of mutually disjoint simple closed curves, therefore the
latter part can be deduced from the general version of the famous Carath�eodory
theorem.

In order to prove Theorem 5.1, �rst we need the next

5.3. Lemma. In addition to the hypothesis in Theorem 5.1, further assume that
� has in�nitely many elements. Then, there exists a certain exhausting sequence
(Rn)

1
n=1 of R0 with the following properties:

(0) each Rn is a subdomain of R0;
(i) R1 � R2 � . . . ; [1n=1Rn = R0;
(ii) each �n = @Rn \ R0 is a homotopically non-trivial smooth simple closed

curve which is freely homotopic to any other �m; and moreover if R is not
biholomorphic to the punctured plane C� then �n is not homotopic to any
puncture of R;

21



(iii) every limit point of (�n)
1
n=1 is contained in �; and

(iv) R0 nR1 contains no branch points of p:

Proof of Lemma 5.3. First we shall show that � is open in @R0; in other words,
V \ @R0 = � for some open neighbourhood V of � in R: In fact, let T be a
compact neighborhood of � with smooth boundary such that T � �
(G) and that
@T \ @R0 = ;; then it su�ces to show that T0 := T \ R0 consists of �nitely many
components each of which has at most �nitely many boundary components, i.e.,
T0 is a �nite union of surfaces of �nite topological types. Here, we should note
that a Riemann surface X is of in�nite topological type if and only if there is
an in�nite family of mutually disjoint, homotopically independent simple closed
curves j (j = 1; 2; . . . ) in X: (We call 1; 2; . . . is homotopically independent
when each j is not freely homotopic to any k for k 6= j nor null-homotopic.) Let
C = f1; . . . ; lg be a �nite family of mutually disjoint, homotopically independent
simple closed curves in T0: Then each j is not null-homotopic in T; too. Otherwise,
j bounds a topological disk � in T; on the other hand, � = � \ @R0 6= ; for
j is not null-homotopic in T0: Since � is simply connected domain and since

� � �R; pj
e� : e� ! � is biholomorphic, where e� is a component of p�1(�):

Thus, @ e� � R0 separates e� := (pj
e�)
�1(�) � @D from @D n e�; this contradicts the

connectedness of @D: So we have seen that j is not null-homotopic in T:
Next suppose that j is freely homotopic to k for some k 6= j in T: Then j

and k bound a topological annulus (ring domain) A in T: Since j is not freely
homotopic to k in T0; � := A \ @R0 6= ;: Moreover, � separates j from k in
A: Indeed, if not, there exists an arc � in A n � connecting j and k; then A n �
is simply connected and contains a nonempty subset � of @R0; which leads to a
contradiction in the same way as in the above.

Further suppose that j is freely homotopic to k0 for k0 6= j; k in T: Then
similarly j and k0 bound a topological annulus A0 in T; and �0 := A0 \ @R0

separates j from k0 in A
0: Because @A \ @A0 = j ; we have A � A0; A0 � A or

A \ A0 = ;: In any cases, � [ �0 devides R0 into two pieces, which contradicts the
connectedness of R0:

Thus we conclude that each j is freely homotopic in T to at most one other
curve. So we can renumber C = f1; . . . ; lg so that j is freely homotopic to
s+t+j in T for j = 1; . . . ; s and that s+j is not freely homotopic in T to any k
for k 6= s+ j; where integers s; t � 0 satisfy 2s+ t = l: In particular, f1; . . . ; s+tg
is a family of mutually disjoint homotopically independent simple closed curves in
T:

On the other hand, as is well-known, a Riemann surface X of �nite topological
type (g; 0;m) has at most 3g�3+2m mutually disjoint homotopically independent
simple closed curves if (g;m) 6= (0; 0); (0; 1); (1; 0): Therefore, l = 2s+t � 2(s+t) �
2(3g� 3+ 2m) if T is of topological type (g; 0;m); hence l is bounded. This means
that T0 must be a �nite union of surfaces of �nite topological types. Thus, we have
proved that compact component � of @R0 is always isolated in @R0:

Let p0 : 
(� )! S = 
(� )=� be the natural projection, and F : S0 = p0(H)!
R0 the conformal mapping induced by f = f' : H ! D: From the above ob-

servation, we can take a curve e� : [0; 1] ! 
(G) such that e�([0; 1)) � D and
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e�(1) 2 p�1(�): Let e�0 := f�1 � e� : [0; 1)! H; then we know that e�0(t) has a limit,

say e�0(1); as t! 1 (see, for example, Pommerenke [12] Proposition 2.14).

Clearly e�0(1) 2 bR \ 
(� ); and let I be the connected component of bR \ 
(� )
containing e�0(1): Now we shall show that the stabilizer H of I in � is generated by
a hyperbolic or parabolic element. (Here we remark that the latter case happens
only when � is generated by a single parabolic element.) Otherwise, H must be
trivial, and so p0 is injective on a neighborhood V of I: Thus we can select a
sequence (In)

1
n=1 of simple arcs in V \H with the same end points as I such that

En � En+1 (n = 1; 2; . . . ) and \1n=1En = I; where En is the region bounded by

In [ I: First, we remark that the cluster set C = \1n=1F (p0(En)) is contained in
@R0: Since � is a compact isolated component of @R0; we can choose a compact
neighborhood W of � such that @W \ @R0 = ;: Here, F (p0(In)) is not relatively
compact in R and ; 6= e�0([0; 1)) \ In � p�10 (F�1(W \ R0)) for su�ciently large
n; therefore we may pick a point Qn 2 F (p0(In)) \ @W for large n: Because @W
is compact, we may assume that Qn converges to a point Q 2 @W: On the other
hand, Q 2 C � @R0; which contradicts the fact @W \ @R0 = ;: Thus, we have
proved that H = Stab� (I) is generated by a hyperbolic or parabolic element 0:
Let (In)

1
n=1 be a sequence of circular arcs (or horocycles) in H with the same end

points as I such that En � En+1 (n = 1; 2; . . . ); and \1n=1En = ;; where En is the
region bounded by In [ I: Then Rn := R0 n F (p0(En [ In)) is a desired exhaustion
of R0 for su�ciently large n: �

Proof of Theorem 5.1. We shall prove in the case that � is an in�nite group.

(When � is �nite, R = bC=� = bC by the Riemann-Hurwitz formula, thus the proof
is much easier.) Moreover, we may assume that R is hyperbolic. In fact, even if not,
taking a su�ciently small closed disk E � R such that E \ R0 = ; (see Corollary
3.2), we have only to replace R by the hyperbolic surface R0 = R nE: Therefore we
assume that R is hyperbolic and � is an in�nite group in the sequel.

Let Rn; �n (n = 1; 2; . . . ) be as in Lemma 5.2 and � : A = fc < jzj < 1g ! R
be an annular covering with respect to �n: (Remark that for freely homotopic
curves, we can take the same annular covering.)

Denote by �̂n the unique closed lift of �n via � and letWn � U = fz; jzj < 1g be
a Jordan domain bounded by �̂n: Compositing the map z 7! c=z to � if necessary,
we may assume that Wn � Wn+1 for all n � 1; here we should note that c > 0 by
Lemma 5.3 (ii). Set W = [1n=1Wn and �̂ = A \ @W: Clearly, �(�̂) � �: We shall
show that the restricted map �j�̂ : �̂! � is a homeomorphism.

Let w0 be an arbitrary point of �: By Lemma 3.6, there exists a connected open
neighborhood V of w0 such that V \R0 is connected, V \R1 = ;; V \(@R0 n�) = ;
and that V is contained in a topological disk eV in R: Now we claim that there
exists a (unique) component V0 of ��1(V ) with the following conditions:

(1) V0 \ �̂ 6= ;;
(2) (��1(V ) n V0) \ �̂ = ;;
(3) V0 \ ��1(�) = V0 \ �̂:
To prove the above claim, we �rst remark that �1 := �jWnW 1

: W n W 1 !
R0 nR1 is biholomorphic. Let V0 be a component of ��1(V ) containing a point of
��11 (V \ R0): Then V0 \ (W nW 1) = ��11 (V \ R0) because V \ R0 is connected.
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In particular, (��1(V ) n V0) \ (W nW 1) = ;; thus the condition (2) follows. Since
�0 := �jV0 : V0 ! V is biholomorphic, we have

��1(�) \ V0 = ��10 (� \ V ) = ��10 (@R0 \ V ) = @��10 (R0 \ V ) \ V0
= @��11 (R0 \ V ) \ V0 = @(V0 \ (W nW 1)) \ V0
= @W \ V0 = �̂ \ V0;

where we use the fact that V0 \W1 = ; thus (3) is proved. By the condition (3),
�0 := ��10 (w0) 2 V0 \ ��1(�) � �̂; which implies (1), and as a by-product we
obtain that � = �(�̂): Moreover, condition (3) yields the injectivity of �j�̂ : �̂! �;
therefore we have proved that �j�̂ : �̂! � is a homeomorphism.

We shall continue the proof of Theorem 5.1. Since � is a conformal map in a
neighborhood of �̂; it is su�cient to prove that �̂ is a quasi-circle.

Here we mention a lemma which is a direct conclusion of the Koebe distorsion
therem: a

(1+a)2 � jf(z)j � a
(1�a)2 for jzj = a < 1 if f is univalent in the unit disk

and f(0) = f 0(0)� 1 = 0:

5.4. Lemma. Let f be a conformal mapping from a disk � into C: For K > 1;

let a 2 (0; 1) satisfy the equation K = (1�a)2
4a : Then there exists a disk e� such that

f(�a) � e� and e�K � f (�):

First, we shall show the following lemma.

5.5. Lemma. The domain W constructed above is linearly connected.

Proof of Lemma 5.5. Since �̂ = @W � A is compact, there exists a positive constant
� < diamW with the following property: if a disk � with diam� � � has a
nonempty intersection of �̂; then � � A n (��1(@R0) n �̂) and � is injective in �:

Take 0 < a < 1 satis�ng the equation B = (1�a)2
4a where B is the constant which

appeared in Propostion 3.1. Let � be an arbitrary disk. In order to prove linear
connectedness, we shall consider several cases.

Case 1. � \ �̂ = ;:
In this case � � W or � \W = ;; so any two points in � \W can be always

joined by a path in � \W:
Case 2. � \ �̂ 6= ; and diam� < a�:
Then �1=a � A; �1=a \ (��1(@R0) n �̂) = ;; and � is injective in �1=a by the

choice of �:
Let V be a connected component of p�1(�(�1=a)): Remark that p is injective in

V because p is a covering map and �(�1=a) is simply connected. Now we apply

Lemma 5.4 to the conformal mapping f = (pjV )�1 � � : �1=a ! V: Thus we

know that f(�) � e� and e�B � f(�1=a) = V � 
(G) for some disk e�: Then,
any two points in f(�) \ D can be joined by a path in e�B \ D; so in V \ D by
Proposition 3.1. Since f(�1=a \ W ) = f(�1=a) \ D = V \ D by the condition

�1=a \ (��1(@R0) n �̂) = ;; any two points in � \W = f�1(f(�) \ D) can be
joined by a path in �1=a \W:
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Case 3. � \ �̂ 6= ; and diam� � a�: If we set M = 1 + 2diamW
a� (> 1=a); then

�M �W: Thus any two points in �\W can be joined by a path in �M \W =W:
Hence, in any cases, arbitrary two points in � \W can be joined by a path in

�M \W; thus W is linearly connected. �

By Lemma 5.5, in particular,W is a bounded Jordan domain. We should remark
that we have proved Lemma 5.5 without results in x4. As for Jordan domains, we
mention the next elementary fact, which follows from the uniform continuity of a
homeomorphic parametrization S1 ! @W and its inverse map.

5.6. Lemma. Let W be a bounded Jordan domain in C and � any positive
number. Then there exists a positive constant � with the property that, for any
cross cut  of W with diam � �; it holds that

minfdiamW1;diamW2g � �;

where W1 and W2 are two components of W n :

By the help of Lemma 5.6, secondly we shall show the following lemma.

5.7. Lemma. W is a John domain.

Proof of Lemma 5.7. Let 0 < a < 1 such that C = (1�a)2
4a ; where C is the constant

in the statement of Proposition 4.1. Since � � A is compact, we can choose a
positive � > 0 so small that any disk � with � \ �̂ 6= ; and diam� � 4� should
satisfy � � A nW 1; �j� is injective, and �(�) � p(�
(G)):

By Lemma 5.6, for su�ciently small � (0 < � � �) the following holds: if a disk �
with diameter< � has nonempty intersection with �̂ = @W; then diam(W nW0) < �
where W0 is the connected component of W n� containing W1:

Now let � be an arbitrary disk centered at z0:
Case 1. � \ �̂ = ;:
In this case, arbitrary two points in W n� can be joined by a path in W n�:
Case 2. � \ �̂ 6= ; and diam� < a�:
Since�1=a\�̂ 6= ; and diam�1=a < �(� �); �1=a\W1 = ; and diam(WnW0) < �

whereW0 is the component ofW n� containingW1: Set�
0 = fz 2 C; jz�z0j < 2�g;

then clearly W nW0 � �0 and �1=a � �0: Since diam�0 = 4�; �0 must satisfy that

�0 � A nW 1; �j�0 is injective, and that �(�0) � p(�
(G)):
Let V be a connected component of p�1(�(�0)); then pjV : V ! �(�0) is a

biholomorphic map for �(�0) is simply connected and �(�0) � p(�
(G)): Since �
is injective in �0; f := (pjV )�1 � � : �0 ! V is a conformal homeomorphism. Now

we apply Lemma 5.4 for f j�1=a
; then we obtain that there exists a disk e� such that

f(�) � e� and e�C � f(�1=a):

Fix a point z1 2 W0 \ (�0 n �1=a): Suppose that there exists a point z2 in

(W nW0) n�1=a(� �0):
We denote by T the component of W n� containing z2; so clearly T \W0 = ;

and T � �0: Since T � �0; @f(T ) � V \ @f(�0 \W n �) = V \ @(D n f(�));
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so we obtain that @f(T ) � @(D n f(�)); which implies that f(T ) is a connected
component of D n f(�):

On the other hand, wj = f (zj) 2 f(�0 \ W n �1=a) = V \ D n f(�1=a) �
D n e�C (j = 1; 2); thus Proposition 4.1 guarantees that w1 and w2 are connected

by a path in D n e� � D n f(�): Since f (T ) is a comonent of D n f(D) and
w2 2 f(T ); w1 must be in f (T ) too, i.e., z1 2 T; which is a contradiction. Therefore
we conclude that (W nW0) n�1=a = ;; i.e., W n�1=a �W0; which implies that any

two points in W n�1=a are joined by a path in W0 � D n�:
Case 3. � \ �̂ 6= ; and diam� � a�:

Let M = 1 + 2diamW
a� (> 1=a); then �M � W: Thus, trivially it holds that any

two points in W n�M can be joined by a path in W n�:
In any cases, we have proved that any two points in W n�M can be joined by

a path in W n�: Now the proof is completed. �

Combining Lemma 5.5 and Lemma 5.7 with Theorem 2.9, we can immediately
obtain Thereom 5.1.

x6. Existence of a topological involution of R w.r.t. @R0

In this section, chiey we shall be concernd with the following result, which is a
crucial part of the proof of our main theorem.

6.1. Theorem. Let G be a Schottky group of rank N(� 0) and p : 
(G)! R :=

(G)=G the natural projection. Suppose that R0 is a proper subdomain of R such
that D = p�1(R0) is a simply connected domain and that @R0 consists of mutually
disjoint simple closed curves. Let f : H ! D be a Riemann mapping of D; � the
Fuchsian group de�ned by � = f�1Gf and � : � ! G the isomorphism de�ned by
�() � f = f �  for all  2 �:

Then f can be extended to a homeomorphism ef : bC ! bC satisfying that �() �ef = ef � : In particular, D = ef(H) is a Jordan domain.

To prove Thorem 6.1, the following proposition comprises the key step.

6.2. Proposition. Under the same hypothesis of Theorem 6.1, there exists a
topological involution J of R with respect to @R0; which can be lifted. More
precisely, J : R! R is an orientation-reversing homeomorphism such that J(R0)\
R0 = ;; J j@R0 = id@R0 ; J �J = idR and there exists a homeomorphism j : 
(G)!

(G) which satis�es that p � j = J � p; jj@Dn�(G) = id@Dn�(G); j � j = id
(G) and
that j � L = L � j for all L 2 G:
6.3. Remark. By Proposition 6.4 below, the above lift j : 
(G) ! 
(G) natu-

rally extends to a self-homeomorphism of bC; and then jj@D = id@D:

Proof of Theorem 6.1. First remark that the conformal map f : H ! D naturally
extends to a homeomorphism f : H n �(� )! D n �(G) by Corollary 5.2.

26



Let j : 
(G) ! 
(G) be the involution satisfying the statement in Proposition

6.2, then we de�ne ef : 
(� )! 
(G) by the rule

ef =

(
f on H n �(� )
j � f � j0 on bC nH;

where j0 denotes the conjugation map z 7! �z:
Since the limit sets of Schottky groups are totally disconnected, it su�ces to

prove the following purely topological proposition, which essentially follows from
the fact that for any plane domain 
; the Ker�ekj�art�o-Sto��low compacti�cation of 

is homeomorphic to the quotient space 
= � obtained by collapsing each boundary

component of 
 in bC to one point (with the quotient topology). �

6.4. Proposition. Let E1; E2 be totally disconnected compact subsets of bC; and
set 
i = bC n Ei for i = 1; 2: Then, any homeomorphism f : 
1 ! 
2 (if exists)

uniquely extends to a homeomorphism ef : bC! bC:
Sketch of the proof of Proposition 6.4. Let z 2 E1: By the Zoretti theorem (cf
[N:p.109]), we can take a nesting sequence �n; n = 1; 2; . . . of Jordan curves in

1 shrinking to the one point z: Then ff (�n)g is a nesting sequence of the Jordan

curves shrinking to the exactly one point, say, w: Thus we can assign ef(z) as the
limit point w of f (�n) for z 2 E1: De�ning ef = f on 
1 = bC n E1 we have a

homeomorphic extension ef : bC! bC of f: �

Now, our only task is to prove Proposition 6.2! As a preparation, we now state
general results about relations between geometric properties of covering spaces and
algebraic ones of the fundamental groups. The proof of these results is straightfor-
ward, so we shall omit it. Suppose that p : 
 ! R is a normal (=Galois) covering
between Riemann surfaces (or, more generally, manifolds). Let R0 be a subdomain
of R and � : R0 ! R denote the inclusion map. Pick a point a0 from R0 and z0
from 
 with p(z0) = a0: The inclusion map � : R0 ! R naturally induces a homo-
morphism �� : �1(R0; a0) ! �1(R; a0): Let � : �1(R; a0) ! G be the monodromy
homomorphism with respect to z0; where G is a covering transformation group of
p : 
 ! R: Namely, g = �([�]) for g 2 G and [�] 2 �1(R; a0) if and only if the �nal
point of the lift ~� of � with initial point z0 coincides with g(z0):

6.5. Proposition.
(1) Any one of the following implies the others.

(1a) Each component of p�1(R0) is simply connected,
(1b) � � �� is injective,
(1c) �� is injective and ��(�1(R0; a0)) \ ker� = 1:

(2) Any one of the following implies the others.

(2a) p�1(R0) is connected
(2b) � � �� is surjective,
(2c) �1(R; a0) = ker� � ��(�1(R0; a0)):
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6.6. Corollary. The following conditions are equivalent to each other.

(a) p�1(R0) is a simply connected domain
(b) � � �� : �1(R0; a0)! G is an isomorphism,
(c) �� : �1(R0; a0) ,! �1(R; a0) is an embedding and �1(R; a0) = ker� o

�1(R0; a0) (semi-direct product).

We now return to the case we have considered, i.e., 
 = 
(G) and p : 
 !
R = 
(G)=G is a Schottky covering. Since p�1(R0) = D is a simply connected do-
main, by the Corollary 6.6, it turns out that the homomorphism �� : �1(R0; a0)!
�1(R; a0) has a cross-section s : �1(R; a0) ! �1(R0; a0); e.g., s = (� � ��)�1 �
�: Through the natural homomorphisms h : �1(R0; a0) ! H1(R;Z) and h0 :
�1(R0; a0)! H1(R0;Z) (Hurewicz homomorphisms), homomorphisms �# : H1(R0;Z)!
H1(R;Z); s# : H1(R;Z)! H1(R0;Z) of the �rst homology groups are induced (see
the diagram (6.1)). Here we should remark that the kernel of the Hurewicz homo-
morphism is the commutator subgroup of the fundamental group.

(6.1)

�1(R0; a0)
������! �1(R; a0)

s����! �1(R0; a0)

h0

??y h

??y h0

??y
H1(R0;Z)

�#����! H1(R;Z)
s#����! H1(R0;Z)

Since s# � �# = (s � ��)# = idH1(R0;Z); we obtain the following

6.7. Proposition. The homomorphism �# : H1(R0;Z) ! H1(R;Z) induced by
the inclusion map � : R0 ! R is injective.

To prove Proposition 6.2, we must show the next lemma.

6.8. Lemma. The exterior R1 = R nR0 of R0 is homeomorphic to R0:

Proof. First, we recall that the Schottky group G is a free group of �nite rank N:
Next, let (g; 0; m) be the topological type of R0; i.e., R0 is a genus g compact surface
(without punctures) with m mutually disjoint closed topological disks removed. As
is well-known, the fundamental group �1(R0; �) is a free group of rank 2g+m� 1:
Now, Corollary 6.6 yields that �1(R0; �) is isomorphic to G; thus N = 2g +m� 1:

For a while, suppose that R1 is connected. Let (g
0; 0;m0) be the topological type

of R1; then clearly m = m0 and g+ g0 +m� 1 = N since R is of genus N compact
surface and R = R0 [ R1; thus g

0 = g which asserts that R0 and R1 are of same
topological type (g; 0;m): So, we have only to prove the connectedness of R0:

Let c1; . . . ; cm be boundary loops of R0 which are consistently oriented. Denote
by C1; . . . ; Cm the homology class of c1; . . . ; cm inR0; respectively. Here, notice that
H1(R0;Z) has a generators C1; . . . ; Cm over Z with the sole relation C1+� � �+Cm =
0: Suppose that R1 was disconnected. Let R1

0 be a connected component of R1;
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then R1
0 had some boundary components, say, c1; . . . ; cl with 1 � l < m: Let

Ci
0 = �#(Ci) be the homology class of ci in R; then C1

0 + � � � + Cl
0 = 0 since

C1
0+ � � �+Cl0 = [c1 + � � �+ cl] = [�@R1

0] = 0 in H1(R;Z): By Proposition 6.4, �# :
H1(R0;Z)! H1(R;Z) is injective, so we obtain an extra relation C1+ � � �+Cl = 0
which is a contradiction. �

6.9. Proposition. Under the same hypothesis of Theorem 6.1, we have a system
of disjoint simple closed curves f`1; . . . ; `Ng on R; which satis�es the following
conditions:

(a) p : 
(G) ! R is the highest covering which lifts `i to a closed loop for
i = 1; . . . ; N;

(b) each `i transversely intersects @R0 at exactly two points, and
(c) R0

0 = R0n[Ni=1`i and R1
0 = R1n[Ni=1`i are both simply connected domains,

where R1 = R nR0:

Proof. Let (g; 0;m) be the topological type of R0; then N = 2g+m� 1 as we have
seen before. Let c1; . . . ; cm be boundary comopnents of R0; or equivalently, of R1:
Then there exist mutually disjoint simple closed arcs u1; . . . ; uN on R1 as follows
(see Fig. 6.1):

(i) whole ui is contained in R1 except its endpoints,
(ii) for i = 1; . . . ;m� 1; ui connects cm with ci;
(iii) for i = m; . . . ; m+ 2g � 1 = N; ui starts from cm and returns to cm; and
(iv) R1

0 := R1 n [Ni=1ui is connected.

Fig. 6.1

In order to advance the proof, we require several lemmas as the following.

6.10 Lemma. R1
0 is simply connected.

Proof of Lemma 6.10. Let �i denote the compact sufrace (with boundary) which
is obtained by cutting R1 along u1 [ � � � [ ui: (We set �0 = R1:) Let �(�) be the
Euler characteristic of a compact surface � with boundary, that is

�(�) = #fverticesg �#fedgesg+#ffacesg
for an arbitrary triangulation of �: Further remark that �(�g;m) = 2 � 2g �m;
where �g;m represents a compact orientable surface of genus g with m boundaries.
Because �i is obtained by cutting �i�1 along ui; we have �(�i) = �(�i�1) + 1 for
i = 1; . . . ; N: Summarizing these equalities, we obtain that

�(�N ) = �(�0) +N = 2� 2g �m+N = 1:

Therefore R1
0 must be homeomorphic to the unit disk. �
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6.11. Lemma. p�1(R1) is simply connected. In particular, the restriction of p to
any component of p�1(R1) is a universal covering of R1:

Proof of Lemma 6.11. p�1(R1) is the comlement of the connected set D; therefore
the above statement is clear. �

Let fR1

0
be connected component of p�1(R1

0): By Lemmas 6.10 and 6.11, the

restriction map pj
fR1

0 : fR1

0 ! R1
0 is bijective. Let e� denote the closure of fR1

0
:

By the way, we can take a closed curve wi : [0; 1]! R1 which starts from one side
of ui and ends to another side of ui; and which satis�es that wi((0; 1)) � R1

0: Here,
we should remark that for i = 1; . . . ;m�1; wi is freely homotopic to the boundary

curve ci: Let ewi : [0; 1]! 
(G) be the unique lift in e� of wi and Li be the unique
element of G with ewi(1) = Li( ewi(0)): Clearly wi is a homotopically nontrivial loop
in R1; so that Li 6= 1 by virture of Proposition 6.5.(1) and Lemma 6.11. Let u+i
be the unique lift of ui which passes through ewi(0); and set u�i = Li(u

+
i ): Then,

p�1(ui) \ e� = u+i [ u�i and u+i \ u�i = ; (see Fig. 6.2).

Fig. 6.2

Let, for i = 1; . . . ; N; v̂+i (resp. v̂�i ) be the geodesic curve in H which connects
images a+i ; b

+
i (resp. a�i ; b

�
i ) of endpoints of u+i (resp. u�i ) under f�1; that is,

v̂�i is the semi-circle in H perpendicularly intersecting @H = bR at a�i and b�i : Set
v�i = f(v̂�i ) and `

�
i = u�i [v�i for i = 1; . . . ; N: Then it is obvious that `�i are Jordan

curves in 
(G) and Li(`
+
i ) = `�i by construction. Furthermore, `+1 ; `

�
1 ; . . . ; `

�
N are

mutually disjoint. Indeed, if some `�i intersects other `�k (possibly with di�erent

signature), since v�i transversally intersects v�k at most one point while u�i \u�k = ;;
the closed curve `�i separates f (a�k ) from f(b�k ); this is a contradiction.

We shall denote by Ext`�i the component of bC n `�i which contains R1
0: By

de�nition, Li(Ext`
+
i ) \ Ext`�i = ; for i = 1; . . . ; N; and so the subgroup G0 :=<

L1; . . . ; LN > of G generated by L1; . . . ; LN is a Schottky group of the same rank
N and W := \Ni=1(Ext`+i \Ext`�i ) is a fundamental domain of G0: Here we should
note that W \ @D = @� n (u+1 [ u�1 [ � � � [ u�N ) consists of �nite number of lifts of
some part of boundary curves c1; . . . ; cm; particularly, W \ @D � 
(G): As clearly
W \ D � 
(G); we have 
(G0) � 
(G): On the other hand, trivially 
(G0) �

(G); thus we conclude that 
(G0) = 
(G): Since 
(G0)=G0 and R = 
(G)=G
are of the same genus N; the Riemann-Hurwitz theorem implies that the induced
covering map
(G0)=G0 = 
(G)=G0 ! 
(G)=Gmust be univalent, in other words,
G = G0: Therefore `i := p(`�i ) for i = 1; . . . ; N have all the disired properties, by
the construction above. For example, R0

0 is known to be simply connected domain
by the proof of Lemma 6.10. The proof of Proposition 6.9 is now completed. �
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Proof of Proposition 6.2. Let `1; . . . ; `N be a system of mutually disjoint simple
closed curves on R as in Proposition 6.9. Set R0

0 = R0n[Ni=1`i and R1
0 = R1n[Ni=1`i

are both simply connected domains, where R1 = R n R0: Let W be a component
of p�1(R n [Ni=1`i); then W is a 2N -ply connected domain with boundary curves
`+1 ; `

�
1 ; . . . ; `

�
N ; where `

�
i is a closed lift of `i: We denote by Li the unique element

of G which maps `+i to `�i : Let fRk 0 be the connected component of p�1(Rk 0) which

is contained in W and let �k be the closure of fRk 0 for k = 0; 1: Then, �k seems as
a 4N -gon with 2N sides `�i \�k (i = 1; . . . ; N ) and 2N sides which are lifts of some
part of @R0: Since the order of `

�
i \�0 in @�0 well corresponds to the one of `

�
i \�1

in @�1; we can obtain an orientation-reversing homeomorphism eJ0 : @�0 ! @�1

with the following two properties:

(1) eJ0 = id on �0 \ @D = �1 \ @D;
(2) eJ0 � Li = Li � eJ0 on �0 \ `+i for i = 1; . . . ; N:

As �0 and �1 are Jordan domains, we can extend eJ0 to a homeomorphism eJ1 :

�0 ! �1 with eJ1j@�0
= eJ0: By Property (1), we can further extend eJ1 to an

orientation-reversing homeomorphism eJ2 :W ! W by the rule:

eJ2 = � eJ1 on �0eJ�11 on �1:

Noting that eJ2 �Li = Li � eJ2 on `+i for i = 1; . . . ; N; we extend eJ2 to a homeomor-

phism eJ : 
(G)! 
(G) as the following:

eJ = L � eJ2 � L�1 on L(W ) for all L 2 G:

By construction, eJ satis�es the following conditions:

(a) eJ(D) \D = ; and eJ = id on @D \
(G);
(b) eJ � eJ = id
(G);

(c) eJ � L = L � eJ for any L 2 G:
Because of (c), eJ descends to a homeomorphism J : R ! R with J � p = p � eJ;
which has the desired properties. �

In order to complete the proof of Theorem 2.1, we have only to show the following

6.12. Theorem. Let G be a Schottky group of rank N(� 0) and p : 
(G) !
R := 
(G)=G the natural projection. Suppose that R0 is a proper subdomain of
R such that D = p�1(R0) is a simply connected domain and that @R0 consists of
mutually disjoint quasi-analytic curves. Let f : H ! D be a Riemann mapping of
D; � the Fuchsian group de�ned by � = f�1Gf and � : � ! G the isomorphism
de�ned by �() � f = f �  for all  2 �:

Then f can be extended to a quasiconformal homeomorphism ef : bC ! bC satis-

fying that �() � ef = ef � : In particular, D = ef(H) is a quasidisk.

Proof. By Theorem 6.1, f can be extended to a homeomorphism ef0 : bC ! bC
satisfying that �() � ef0 = ef0 � : Let F0 denote a homeomorphism from S = H=�
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onto R induced by ef0 : 
(G) ! 
(G): Since F0jS0 : S0 ! R0 is conformal and
@R0 consists of mutually disjoint quasi-analytic curves, F0jS0 can be extended to a
quasiconformal mapping F1 on a neighborhood U of S0 such that F1 is di�eomorphic
in U n S0: Here, we used the well-known fact that a quasiconformal map from the
unit disk � onto a quasidisk can be extended to a quasiconformal self-map of the

whole plane bC whose restriction to bC n � is real-analytic (for example, by the
Ahlfors-Weill extension). Then, it is easily seen that there exists a di�eomorphism
F : S n S0 ! R n R0 which coincides with F1 on some neighborhood of @S0 and
which is homotopic to F0jSnS0 by a homotopy that �xes @S0 pointwise.

We extend F to a homeomorphism from S onto R by de�ning F = F0 on S0;

then F becomes quasiconformal and F ' F0 in S: Since F0 can be lifted to ef0; F
also can be lifted to a homeomorphism ef : 
(� )! 
(G) such that �()� ef = ef �
for all  2 �: By Proposition 6.4, ef naturally extends to a homeomorphism of bC
(denoted ef also). Since F : S ! R is quasiconformal, ef is also quasiconformal on


(� ) � bC n bR: On the other hand, bR is a quasiconformally removable set, thus ef
must be quasiconformal on the whole plane. The proof is �nished. �

Proof of Theorem 2.1. Let ' 2 IntS(� ): Then G = �'(� ) is a Schottky group by
Lemma 2.3 and Maskit's characterization theorem, and R0 := f'(H)=G is a proper
subdomain of R := 
(G)=G with quasi-analytic boundary by Corollary 5.2. Now
Theorem 6.12 implies that f' can be extended to a � -compatible quasiconformal

homeomorphism ef of bC; which means that ' 2 T (� ): Thus we have proved now
that IntS(� ) � T (� ): �
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