
PRELIMINARIES FOR THE COURSE ON COMPLEX DYNAMICS

TOSHIYUKI SUGAWA

UNIVERSITY OF HELSINKI

FEBRUARY 18 { 22, 2002

1. Metric

1.1. Metric and distance. Let 
 be a subdomain of the Riemann sphere bC = C [f1g
or, more generally, a Riemann surface. A continuous di�erential form �(z)jdzj on 
 is
called a conformal metric on 
 (in a weak sense) if the density �(z) is positive for each
point in 
 except for a discrete set. If �(z) is always positive, then �(z)jdzj is a conformal
metric in the usual sense. When a conformal metric � is given for 
; a distance on 
 can
be associated to � in the following manner:

Æ�(z; w) = inf



Z



�(�)jd�j;

where the in�mum is taken over all the recti�able curves 
 joining z and w within 
: The
distance Æ�(z; w) is called the induced distance of �:
Let f : 
0 ! 
 be a non-constant holomorphic map. Then the pull-back of � under f

is given by
f ��(z)jdzj = �(f(z))jf 0(z)jjdzj:

Note that f �� is a conformal metric on 
0 while the quantity Æ�(f(z); f(w)) is not neces-
sarily a distance on 
0: The following is obvious but useful below.

1.2. Lemma.
Æ�(f(z); f(w)) � Æf��(z; w); z; w 2 
0:

1.3. Hyperbolic metric. The hyperbolic (or Poincar�e) metric �D (z)jdzj on the unit disk
D = fz 2 C ; jzj < 1g is de�ned by

�D (z) =
1

1� jzj2
:

Then the induced distance (called the hyperbolic distance) takes the form

hD (z; w) = arctanh

���� z � w

1� �zw

���� ;
where arctanh t = (1=2) log((1 + t)=(1� t)): For a general domain 
 � bC with #@
 � 3;
the hyperbolic metric �
(z)jdzj on it is de�ned so that f ��
 = �D holds for a holomorphic

universal cover f : D ! 
 of 
: A crucial fact is that a domain 
 � bC with #@
 � 2
does not carry the hyperbolic metric, namely, it admits no holomorphic universal cover
from the unit disk.

Date: January 20, 2002, revised November 28, 2002.

1
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The Schwarz-Pick lemma yields the useful contraction property f ��
 � �
0
for any

holomorphic maps f : 
0 ! 
: The similar inequality h
(f(z); f(w)) � h
0
(z; w) also

holds, where h
 denotes the hyperbolic distance on 
 induced by �
(z)jdzj: Note that
the hyperbolic distance is complete.

1.4. Spherical metric. The spherical metric �(z)jdzj on the Riemann sphere bC is de-
�ned by

�(z) =
1

1 + jzj2
:

This is nothing but the induced metric from the Euclidean metric on R3 when bC is
embedded as the sphere f(x1; x2; x3); x

2
1 + x22 + (x3 � 1=2)2 = 1=22g via the stereographic

projection (see Exercise 2). Therefore, the induced distance between two points is the
length of the shorter arc of the great circle passing through those two points. Due to the
simplicity, we prefer to use the chordal distance rather than the arc distance. The chordal
distance is given by

d#(z; w) =
jz � wjp

(1 + jzj2)(1 + jwj2)

for z; w 2 C while the arc distance is given by 2 arctan(d#(z; w)=2): When either z or w
is the point at in�nity, the distance is given by an obvious limiting process.

1.5. Spherical derivative. Recall the fact that a meromorphic function on a domain
can be regarded as a holomorphic map from the domain into the Riemann sphere. Let f
be a meromorphic function on a domain 
 � C : Then the density of the pull-back of the
spherical metric under f is called the spherical derivative of f and denoted by f# :

f#(z) =
jf 0(z)j

1 + jf(z)j2
:

2. Compactness properties of a family of holomorphic functions

In this section, we see fundamental properties of limit functions of locally uniformly
convergent sequence of holomorphic maps. The Weierstrass double series theorem implies
that the limit function of such a sequence is necessarily holomorphic, too. The key tool is
the argument principle here. After then, we discuss normality of a family of meromorphic
or analytic functions in the sense of Montel. This concept is indispensable to develope
the theory of complex dynamics.

2.1. Hurwitz's theorem. Let fn; n = 1; 2; : : : ; be a locally uniformly convergent se-
quence of univalent meromorphic functions on a domain 
: Then the limit f of the se-
quence is also univalent unless it is a constant.

Proof. On the contrary, we assume that f is non-constant and that there are two points
z1 and z2 in 
 with z1 6= z2 such that f(z1) = f(z2) =: w0: We take a smooth Jordan
domain 
0 with z1; z2 2 
0 so that 
0 � 
: Since the set of zeros of f �w0 is discrete, we
can choose 
0 so further that f�w0 6= 0 on @
0: Set m = minfjf(z)�w0j; z 2 @
0g(> 0):
We may also assume that f is a bounded holomorphic function on 
0: Since fn converges
to f uniformly on 
0; there is an integer n0 such that jfn�f j < m=2 on 
0 for n � n0: By
construction, we now see that jf �w0 � (fn � w0)j < jf � w0j on @
0: Rouche's theorem
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implies that the number of zeros of fn � w0 in 
0 is same as that of f � w0; which is at
least two. This contradicts the univalence of fn:

The same argument works in the proof of the following assertion.

2.2. Lemma. Let fn be a locally uniformly convergent sequence of holomorphic maps
from a domain 
 into another domain D � bC : If fn(z0) approaches to a point w0 2 @D
for some z0 2 
; then fn converges to w0 locally uniformly in 
:

2.3. Slight generalization of locally uniform convergence. In practice, we en-
counter the situation that the domain where the function fn is de�ned may change for
di�erent n's. We can formulate the concept of locally uniform convergence even for the
case.
Suppose that meromorphic functions fn : 
n ! bC ; n = 1; 2; : : : ; and f : 
 ! bC

are given. The sequence fn is said to converge to f locally uniformly in 
 if for every
compact subset K of 
 there exists an integer k such that K � 
n for n � k and that
fn; n = k; k + 1; : : : ; converges to f uniformly on K:
If we generalize the notion of locally uniform convergence in this way, the same thing

can be said as in the above.

2.4. Normality. Let 
 be a subdomain of bC : Let (X; d) be a complete metric space and
denote by C(
; X) the set of continuous functions from 
 into X: We give to C(
; X)
the compact-open topology, in other words, the topology of locally uniform convergence.
A subset F of C(
; X) is called normal if the closure of F in C(
; X) is compact. Since
C(
; X) is metrizable (see Exercise 5), F is normal if and only if any sequence of maps
in F has a locally uniformly convergent subsequence.

2.5. Equicontinuity. A family F � C(
; X) is said to be equicontinuous on a set E � 

if, for any number " > 0; there exists a number Æ > 0 such that d(f(z); f(w)) < " whenever
z; w 2 E satisfy d#(z; w) < Æ and f 2 F : Also, F is called locally equicontinuous on 
 if
it is equicontinuous on each compact subset of 
:
By using these notions, we can characterize the normality in more comprehensive terms.

2.6. Arzel�a-Ascoli theorem. A family F � C(
; X) is normal if and only if the fol-
lowing two conditions are satis�ed:

(i) F is locally equicontinuous on 
; and
(ii) for each z 2 
 the set ff(z); f 2 Fg is relatively compact in X:

The proof uses a standard diagonal process. See, for instance, [3] or [14].

2.7. Lemma (Normality is a local property). Let F be a subset of C(
; X): Suppose
that, for each point z 2 
; there is an open neighbourhood V of z in 
 so that F is normal
on V: Then F is normal on the whole 
:

Proof. Use the diagonal process to extract a convergent subsequence from a given sequence
in F :
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2.8. Normality of holomorphic or meromorphic functions. A family F of mero-
morphic functions on a �xed domain 
 is said to be normal as meromorphic functions
if F is normal as a subset of C(
; bC ); in other words, if any sequence of functions in F
has a subsequence which converges locally uniformly to either a meromorphic function or
1: In what follows, we will simply say that F is normal if F is normal as meromorphic
functions if no confusion occurs.
A family of holomorphic functions on a �xed domain 
 is said to be normal as holo-

morphic functions if the family is normal as a subset of C(
; C ); where C is equipped
with the Euclidean metric.
The following criterion is classical.

2.9. Theorem (Montel's theorem). A family F of holomorphic functions on 
 is
normal as holomorphic functions if and only if it is locally uniformly bounded.

Proof. By Cauchy's integral formula, locally uniform boundedness implies local equicon-
tinuity. Then use the Arzel�a-Ascoli theorem. We now show the converse. If F is not
locally uniformly bounded, then there exist a point z0 2 
 and a sequence fn in F such
that fn(z0)!1: Lemma 2.2 now implies that fn converges to1 locally uniformly. This
implies that F is not normal as holomorphic functions.

2.10. Theorem. A family F of meromorphic functions on a domain 
 is normal if and
only if for every z0 2 
 there is a neighbourhood U of z0 such that either jf j < 2 in U or
jf j > 1=2 in U holds for each f 2 F :

Proof. Note that if a subdomain U is such as above then F is normal in U by Montel's
theorem. Thus, the \if " part is a simple consequence of Lemma 2.7. We now show the
\only if " part. Assume that F is normal and �x a point z0 2 
: Take a number " with
0 < " < d#(1; 2) = d#(1; 1=2): Then the equicontinuity of F guarantees the existence of
a number Æ > 0 so that d#(f(z); f(z0)) < " whenever d#(z; z0) < Æ and f 2 F : Let now
U = fz; d#(z; z0) < Æg: Then either jf j < 2 in U or jf j > 1=2 in U holds according to the
cases jf(z0)j � 1 and jf(z0)j � 1:

The following result gives an extremely weak suÆcient condition for normality.

2.11. Theorem (Montel's three point theorem). Let a; b and c be distinct three

points in bC : The family F of meromorphic functions on a �xed domain 
 which omit
these three values a; b and c is normal.

Proof. Without loss of generality, we can assume that fa; b; cg = f0; 1;1g: Set D =bC nf0; 1;1g: Since normality is a local property (Lemma 2.7), we may also assume that 

is the unit disk D : Let fn; n = 1; 2; : : : ; be a sequence of functions in F :We now show that
there is a locally uniformly convergent subsequence of fn: If the set ffn(0); n = 1; 2; : : :g
accumulates at a point in @D; Lemma 2.2 provides a desired subsequence. If not, we may
further assume that fn(0) converges to a point w0 inD: In particular, hD(fn(0); w0) < 1 for
suÆciently large n: Note that the hyperbolic disk BD(w0; t) = fw 2 D; hD(w0; w) < tg is
bounded due to the completeness of the hyperbolic distance. The contraction property of
the hyperbolic distance yields the inequality hD(fn(z); fn(0)) � hD (z; 0) = arctanh(jzj):
Hence, fn(D r ) � BD(w0; 1 + t); where t = arctanh(r); and therefore, the sequence fn
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is uniformly bounded in D r = fjzj < rg: By Theorem 2.9, we �nally choose a locally
uniformly convergent subsequence.

We remark that the �nal argument in the above proof is essentially same as the Schottky
theorem.

2.12. A simple proof of the great Picard theorem. If we assume Montel's three
point theorem, we can derive the great Picard theorem relatively easily from the little
Picard theorem. Recall now these theorems.

The little Picard theorem: Suppose that a meromorphic function f de�ned on the plane
C omits at least three values in bC : Then f must be a constant.
The great Picard thereom: Suppose that a meromorphic function f de�ned on the punc-

tured disk D � = f0 < jzj < 1g omits at least three values in bC : Then the origin is either
a pole of f or a removable singularity of f:

The following proof is due to Montel.

Proof of the great Picard theorem. Suppose that a meromorphic function f on D
� omits

three values, say w1; w2 and w3: We consider the sequence fn de�ned by fn(z) = f(z=n):
Then, by Theorem 2.11, the sequence fn; n = k; k + 1; : : : ; is normal on jzj < k: By
the diagonal process, we can now take a subsequence fnj of fn such that the sequence
fnj ; j = k; k+1; : : : ; is uniformly convergent in jzj � k: Let g be the limit function de�ned
on C

� = C n f0g of fnj : Then, by Lemma 2.2, g is either a constant function with value

wi for some i or a holomorphic map from C � into bC n fw1; w2; w3g: In the latter case,
however, g must be constant. Indeed, the function g(ez) is constant by the little Picard
theorem. At any event, g must be a constant function, say 0: Consider now the small
circles 
j = fjzj = 1=njg: Since fnj converges to 0 uniformly on the unit circle, for every
" > 0; we have jf j < " on 
j; j � j0 for some j0: The maximum modulus principle now
yields that jf j < " on the annulus 1=nj+1 < jzj < 1=nj for j � j0: Hence, jf j < " in
the neighbourhood of the origin. Riemann's removable singularity theorem implies the
desired conclusion.

We now show a very convenient necessary and suÆcient condition for normality.

2.13. Theorem (Marty's theorem). A family F of meromorphic functions on a do-
main 
 � C is normal if and only if the spherical derivatives f# of f 2 F are locally
uniformly bounded in 
:

Proof. Since the target space bC is compact, normality is equivalent to local equicontinuity
in this case by the Arzel�a-Ascoli theorem.
First we show the \if " part. Let z0 2 
 be given and take a suÆciently small r > 0 so

that V = fz 2 C ; jz � z0j � rg � 
: Then there is a constant M such that f# � M on
V for every f 2 F : By Lemma 1.2, for z 2 V and f 2 F we have

d#(f(z); f(z0)) � Æf��(z; z0) �M jz � z0j:

This estimate implies local equicontinuity of F on 
:
Next we show the \only if " part. By Theorem 2.10, for each point z0 2 
 there is a disk

V = fz 2 C ; jz � z0j � rg such that either jf j � 2 in V or jf j � 1=2 in V for every f 2 F :
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If jf j � 2 holds in V; by Cauchy's estimate, one obtains the inequality jf 0(z)j � 8=r in
jz � z0j � r=2: Therefore, f#(z) � 8=r in jz � z0j � r=2: In the case when jf j � 1=2; the
same inequality is obtained by considering 1=f instead of f above.

The following characterization of non-normality is often used to deduce a deep connec-
tion between apparently di�erent properties.

2.14. Theorem (Zalcman's lemma). Let F be a family of meromorphic functions on a
domain 
 � C : Then F is not normal if and only if there exist a sequence fn of functions
in F ; a sequence zn of points in 
 tending to a point z0 in 
; a sequence �n of positive
numbers tending to 0 and a non-constant meromorphic function f on C whose spherical
derivative is bounded such that fn(zn + �nz)! f(z) locally uniformly in C :

The following proof is due to Bergweiler [6].

Proof. If fn is locally uniformly convergent, then the limit of the functions fn(zn + �nz)
must be constant in the above situation. Therefore, suÆciency of the above condition is
clear.
We assume that F is not normal in order to show the converse direction. Then Marty's

theorem implies that there exist a sequence fn of functions in F and a sequence �n of
points in 
 tending to a point �0 2 
 such that f#n (�n)!1:We may assume that �0 = 0
and D � 
: Choose zn 2 D so that

Mn := max
jzj�1

(1� jzj)f#n (z) = (1� jznj)f
#
n (zn)

and set �n = 1=f#n (zn): SinceMn � (1�j�nj)f
#
n (�n); we see thatMn !1 and hence that

�n = (1�jznj)=Mn ! 0: Since jzn+�nzj < 1 for jzj < Mn; the function gn(z) = fn(zn+�nz)
is de�ned for jzj < Mn and satis�es

g#n (z) = �nf
#
n (zn + �nz) �

1� jznj

1� jzn + �nzj
�

1� jznj

1� jznj � �njzj
=

1

1� jzj=Mn

there. By Marty's theorem, the sequence gn; n = k; k + 1; : : : ; forms a normal family in
jzj < Mk for each k: Therefore, gn has a subsequence which is locally uniformly convergent
in C : Replacing the original fn by a suitable subsequence, we may assume that gn converges

to a meromorphic function f : C ! bC locally uniformly on C and that zn tends to a point
z0 2 
: Since g#n (0) = 1 for all n; we have f#(0) = 1; and therefore, f is non-constant.
Furthermore, by the above estimate, we obtain f#(z) � 1 for all z 2 C :

Normality of a sequence fn of meromorphic functions in 
 does not imply convergence
without extra assumptions. The following general property on sequences is useful to note.

2.15. Lemma. Let an; n = 1; 2; : : : ; be a sequence of points in a metric space (X; d) and
let a 2 X: Suppose that every subsequence of an has a subsequence which converges to a:
Then an itself converges to a:

Proof. Suppose, on the contrary, that an does not converge to a: By de�nition, there are
in�nitely many n's so that d(an; a) � "0 for some �xed "0 > 0: If we take a subsequence
from those n's, then it has no subsequence which converges to a: The contradiction now
completes the proof.
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As an easy application of the above principle, we can show Vitali's theorem.

2.16. Theorem (Vitali's theorem). Suppose that a sequence fn; n = 1; 2; : : : ; of mero-
morphic functions forms a normal family on a domain 
: Assume that there is a subset
W of 
 with accumulation points in 
 such that fn(z0) converges for each z0 2 W: Then
fn converges to a meromorphic function locally uniformly on 
:

Proof. We recall that the space C(
; bC ) with the topology of locally uniform convergence
is metrizable. By hypothesis, fn has a subsequence which converges to a meromorphic
function f in C(
; bC ): We now show that fn actually converges to f in C(
; bC ): Let
fnj be any subsequence of fn: Then, normality of ffng implies that fnj has a convergent

subsequence in C(
; bC ) with limit being g: By assumption, f(z0) = g(z0) for each z0 2 W:
Now the identity theorem implies that f = g: Hence, Lemma 2.15 can be used to conclude
the result.

3. Plane quasiconformal mappings

3.1. ACL functions. A continuous function f de�ned in a domain 
 � C is said to be
ACL (absolutely continuous on lines) if for any closed rectangle R = [a; b]�[c; d] contained
in 
 the function f(x+ iy) is absolutely continuous in a � x � b for almost all y 2 [c; d]
and absolutely continuous in c � y � d for almost all x 2 [a; b]:
Note that we can de�ne the partial derivatives fx and fy a.e. in 
 for an ACL functions.

Formally, we de�ne

fz =
1

2
(fx � ify) and f�z =

1

2
(fx + ify):

The reader may feel dissatisfaction because the above de�nition seems to strongly de-
pend on the coordinates. We try to give a more natural formulation under a mild extra
assumption. (See also Theorem 3.4 below.)
Recall that a locally integrable function g is called a distributional derivative @xf of f

in 
 if Z



'xfdm = �

Z



'gdm

holds for every smooth function ' with compact support in 
; where dm denotes the
plane Lebesgue measure. Note that the smoothness requires only C1 in this case. The
distributional derivative @yf is also de�ned similarly.

3.2. Lemma. Let f : 
 ! C be a continuous function. Suppose that f is ACL and has
locally integrable partial derivatives fx; fy in 
: Then fx and fy are distributional deriva-
tives @xf and @yf in 
; respectively. Conversely, if f has locally integrable distributional
derivatives in 
; then f is ACL in 
 and fx = @xf and fy = @yf hold.

Proof. First we show the �rst part. We need to show thatZ



'xfdm = �

Z



'fxdm



8 T. SUGAWA

for a smooth function ' with compact support in 
: By using the partition of unity, we
may assume that the support of ' lies in a closed rectangle R = [a; b] � [c; d] � 
: By
Fubini's theorem, we computeZ

R

('xf + 'fx)dm =

Z d

c

Z b

a

('xf + 'fx)dxdy:

Because 'xf+'fx = ('f)x; we have
R b

a
('xf+'fx)dx = ['f ]ba = 0 for almost all y 2 [c; d]:

Hence, the desired identity has been shown. We can handle with fy similarly.
Next we show the second part. Let g = @xf: Suppose that a closed rectangle R =

[a; b] � [c; d] � 
 is given. Since g 2 L1(R); by Fubini's theorem, there is a set E of full
measure in [c; d] so that g(x + iy) 2 L1([a; b]) for each y 2 E: Set R� = [a; b] � [c; �] for
c < � < d: Assume that the distributional derivative g = @xf is locally integrable in 
:
Take '(x+ iy) =  (x)�(y) as a test function, where smooth functions  (x) and �(y) have
supports in [a; b] and [c; �]; respectively. Then we haveZZ

R�

 0(x)�(y)f(x+ iy)dxdy = �

ZZ
R�

 (x)�(y)g(x+ iy)dxdy:

Letting �(y) tend to 1 boundedly while  (x) being �xed, we getZ �

c

Z b

a

 0(x)f(x+ iy)dxdy = �

Z �

c

Z b

a

 (x)g(x + iy)dxdy:

Di�erentiating both sides with respect to �; we obtainZ b

a

 0(x)f(x+ iy)dx = �

Z b

a

 (x)g(x+ iy)dx(3.1)

for almost all y 2 E: The exceptional set in y here may depend on  : Nevertheless, we
choose a common exceptional null set N for all  2 C1

0 ([a; b]) because the space C
1
0([a; b])

is separable. Fix � 2 (a; b]: By a suitable approximation, we can check that equation (3.1)
still holds for the function  n de�ned by  n(x) = n(x�a) for a � x � a+1=n;  n(x) = 1
for a+1=n � x � ��1=n;  n(x) = n(��x) for ��1=n � x � � and  n(x) = 0 otherwise,
where n is a suÆciently large integer. Letting n tend to 1; we �nally obtain

f(a+ iy)� f(� + iy) = �

Z �

a

g(x+ iy)dx

for every � 2 (a; b] and y 2 E n N: Therefore, f(x + iy) is absolutely continuous in
a � x � b for every y 2 E nN and the partial derivative fx coincides with g:

3.3. De�nition of quasiconformal mappings. Let K � 1 be a constant. A homeo-
morphism f from a domain 
 � C onto another 
0 � C is called K-quasiconformal if f
is ACL in 
 and if there is a measurable function � on 
 with k�k1 � (K � 1)=(K + 1)
such that

f�z(z) = �(z)fz(z)(3.2)

holds a.e. in 
:

For a proof of the following useful result, see [9].



PRELIMINARIES FOR THE COURSE ON COMPLEX DYNAMICS 9

3.4. Theorem (Gehring-Lehto). Suppose that a continuous open mapping f : 
! C

has the partial derivatives fx and fy a.e. in 
: Then f is totally di�erentiable at almost
every point in 
:

3.5. Equivalent de�nition of quasiconformality. Let f : 
 ! 
0 be an ACL home-
omorphism. We consider the positive Borel measure � = �f on 
 de�ned by �(E) =
m(f(E)): Lebesgue's theorem gives a unique decomposition � = �a + �s; where �a is the
absolutely continuous part of � and �s is the singular part of � with respect to m: The
Radon-Nikodym derivative of �a is given by

d�a
dm

(z0) = lim
r!0

�(B(z0; r))

�r2

for almost every z0 2 
; where B(z0; r) = fz; jz � z0j � rg: On the other hand, if f is
totally di�erentiable at z0; then clearly �(B(z0; r))=(�r

2) ! Jf(z0) as r ! 0; where Jf
denotes the Jacobian of f; namely, Jf = jfzj

2 � jf�zj
2: Hence, by Gehring-Lehto theorem,

we conclude that d�a=dm = Jf a.e. in 
: Therefore, for a compact subset E of 
; we haveZ
E

Jf(z)dxdy = �a(E) � �(E) <1:

In particular, the Jacobian Jf is locally integrable.
If, in addition, f is K-quasiconformal, then Jf = (1� j�j2)jfzj

2 � (1� k2)jfzj
2; where

k = (K � 1)=(K +1): Therefore local integrability of Jf implies local square integrability
of fz and hence f�z: In this way, we have come to another de�nition of quasiconformal
mappings.

A homeomorphism f : 
! 
0 is K-quasiconformal if and only if f has locally integrable
distributional derivatives fz and f�z which satisfy (3.2) for a measurable function � on 

satisfying k�k1 � (K � 1)=(K + 1):

The \if " part follows from Lemma 3.2. The \only if " part is a consequence of the
above observation. Note that we can replace local integrability of fz and f�z by local
square integrability of them in the above characterization.

3.6. Condition (N). A homeomorphism f : 
 ! 
0 is said to satisfy condition (N) if
f preserves null sets, namely, if m(f(E)) = 0 for every Borel set E � 
 with m(E) = 0;
where m denotes the plane Lebesgue measure. This condition is same as the absolute
continuity of the measure � de�ned in x3.5 with respect to the plane Lebesgue measure,
in other words, �s = 0: Note that a homeomorphism f satisfying condition (N) maps
Lebesgue measurable sets to Lebesgue measurable sets.
We prepare a lemma for the possible use of a proof of condition (N).

3.7. Lemma. Let 
 be a bounded domain with boundary of area zero. If a sequence

n of domains is given in such a way that �n(z) ! �(z) as n ! 1 for each point
z 2 C n @
; where �n and � denote the characteristic functions of the sets 
n and 
:
Then m(
n)! m(
) as n!1:

Proof. By Lebesgue's convergence theorem, m(
n) =
R
C
�ndm!

R
C
�dm = m(
):
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3.8. Theorem. A quasiconformal mapping f : 
! 
0 satis�es condition (N) and

�f(E) =

Z
E

Jf(z)dm(z)(3.3)

for each Borel set E � 
:

Proof. Set � = �f : Since the second part of the above statement implies that �s = 0; it is
enough to show (3.3). Let R be a closed rectangle contained in 
 such that f is absolutely
continuous on the boundary of R: Note that f(@R) is then recti�able and, in particular,
of area zero. By using molli�ers (smoothing operators), we may take a sequence fn of
C1-functions in a �xed neighbourhood of R in such a way that fn converges to f uniformly
on R and satis�es (fn)z ! fz and (fn)�z ! f�z in L2(R): Then

R
R
Jfndm !

R
R
Jfdm as

n!1: On the other hand, since
R
R
Jfndm = m(fn(R))! m(f(R)) = �(R) by Lemma

3.7, we obtain
R
R
Jfdm = �(R): Since every open set of 
 can be expressed as a countable

disjoint union of such rectangles up to null sets, (3.3) is valid also for any open subset,
and hence, for any Borel subset of 
:

3.9. Remark. By the standard approximation of a measurable function by simple func-
tions, the relation in (3.3) can easily be strengthened to the formulaZ




'(f(z))Jf (z)dm(z) =

Z

0

'(w)dm(w)

for an integrable function ' on 
0; which is a generalization of a classical formula for the
change of variables.

3.10. Lemma (Chain rule). Let f : 
 ! 
0 be a K-quasiconformal mapping with
locally Lp derivatives for some p � 2 and g : 
0 ! C be a continuous mapping with locally
Lq derivatives for some q > 1 with 1=p+1=q � 1: Then g Æ f has locally Lr derivatives in

 for r = p q=(p+ q � 2) and satis�es

(g Æ f)z = (gz Æ f)fz + (g�z Æ f) �fz and (g Æ f)�z = (gz Æ f)f�z + (g�z Æ f) �f�z(3.4)

and

k(g Æ f)zkLr(
0) + k(g Æ f)�zkLr(
0) �Mkfzk
1�2=q
Lp(
0)

(kgzkLq(f(
0)) + kg�zkLq(f(
0)))(3.5)

for each relatively compact subdomain 
0 of 
; where M is a constant depending only on
K:

Proof. Note that jf�zj
2 � k2jfzj

2 � (k2=(1� k2))Jf a.e., where k = (K � 1)=(K + 1) < 1:
First, assuming (3.4), we show inequality (3.5). By H�older's inequality,Z


0

j(gz Æ f)fzj
rdm �

�Z

0

jgz Æ f j
qjfzj

2dm

�r=q �Z

0

jfzj
pdm

�1�r=q

:

Then, by Remark 3.9, we have

(1� k2)

Z

0

jgz Æ f j
qjfzj

2dm �

Z

0

jgz Æ f j
qJfdm =

Z
f(
0)

jgzj
qdm:

Similar estimates apply to other terms and (3.5) is obtained.
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Next we prove (3.4). When g is smooth, Lemma 3.2 yields that g Æ f has locally
integrable derivatives satisfying (3.4). For a general g; we consider an approximating
sequence gn of g so that k(gn)z�gzkLq(
0) ! 0 and k(gn)�z�g�zkLq(
0) ! 0: Then, by (3.5),
(gn Æ f)z and (gn Æ f)�z form Cauchy sequences in Lr(
0): Those limits are easily seen to
equal the distributional derivatives of @z(g Æ f) and @�z(g Æ f); respectively. Formulas in
(3.4) also follow from this observation.

3.11. Composition of quasiconformal mappings. Suppose that f and g are both
quasiconformal in Lemma 3.10. Let f�z = �fz and g�z = �gz and adopt the (temporary)
convention � = 0 on the set fz; fz(z) = 0g: Then, by the chain rule (3.4), composition
h = f Æ g satis�es

h�z = (gz Æ f)�fz + (�gz) Æ f � �fz = (gz Æ f)fz

�
�+ (� Æ f)

fz
fz

�

hz = (gz Æ f)fz + (�gz) Æ f � �fz = (gz Æ f)fz

�
1 + ��(� Æ f)

fz
fz

�
:

Therefore, h satis�es the Beltrami equation h�z = !hz with

! =
�+ (� Æ f)fz

fz

1 + ��(� Æ f)fz
fz

:(3.6)

It is easy to check that k!k1 � (k1 + k2)=(1 � k1k2) if k�k1 � k1 and k�k1 � k2:
Thus, we conclude that the composition of K1 and K2-quasiconformal mappings is K1K2-
quasiconformal.
Note that ! = � if g is analytic, namely, if g�z = 0:

The following result is very important to do almost everything with quasiconformal
or quasiregular business. This is �rst established by Morrey in 1930s. Later, Bojarski
observed that K-quasiconformal mapping has locally Lp-derivatives, where p = p(K) > 2
is a constant depending only onK: Recently, Astala proved that any number p < 2K=(K�
1) works, where 2K=(K � 1) has been conjectured to be the best constant. The reader
will �nd a self-contained proof of Theorems 3.12 and 3.19 in [4].

3.12. Theorem (The measurable Riemann mapping theorem). Let � be a complex
valued measurable function on the complex plane with k�k1 < 1: Then there exists a
unique normalized quasiconformal mapping f : C ! C satisfying f�z = �fz a.e. in C :

It is usual to normalize f by f(0) = 0 and f(1) = 1: The above function f will be called
the normalized �-conformal homeomorphism of C and denoted by w� in the sequel.

3.13. Theorem. The inverse of a K-quasiconformal mapping is also K-quasiconformal.

From the analytic de�nition of quasiconformal mappings, it is not clear that the inverse
of a quasiconformal mapping is again quasiconformal. Below we give a proof based on
the measurable Riemann mapping theorem, although this fact is usually proved in the
course of the proof of it as in [4]. There are several ways to show this claim, none of which
seems easy to give a short proof in our framework. For instance, that is almost trivial if
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we adopt a geometric de�nition of quasiconformal mappings. However, it is not easy to
prove the equivalence of those de�nitions.

Proof. Let f : 
 ! 
0 be a K-quasiconformal mapping satisfying f�z = �fz; where � is
chosen so that � = 0 on the set where fz vanishes and that supz2
 j�(z)j = k�k1: Then
de�ne � by

� = �

�
fz

fz
� �

�
Æ f�1(3.7)

on 
0: Note that � is Lebesgue measurable by Theorem 3.8. (If � is Borel measurable,
then it is immediate to see that � is Borel measurable without appealing to Theorem
3.8.) We extend � to C by setting � = 0 o� 
: Then k�k1 � (K � 1)=(K + 1): Let
h : C ! C be a quasiconformal mapping with h�z = �hz whose existence is guaranteed by
Theorem 3.12. Then, by (3.6), we see that (h Æ f)�z = 0 a.e. in 
: Weyl's lemma implies
that ' = h Æ f is conformal in 
: Hence, f�1 = '�1 Æ h is quasiconformal.

Applying Theorem 3.8 to the function f�1; we obtain the following.

3.14. Corollary. The inverse of a quasiconformal mapping f satis�es condition (N). In
particular, jJf j > 0 a.e.

The last assertion enables us to see that the coeÆcient �(z) in (3.2) is determined
by the function f in the sense of \almost everywhere" since fz 6= 0 a.e. We call � the
Beltrami coeÆcient of f: Sometimes the Beltrami coeÆcient of f is denoted by �f : Note
also that the Beltrami coeÆcient of f�1 is given by (3.7).

3.15. Lemma (Sto��low property). Let f : 
 ! 
0 be a quasiconformal mapping sat-
isfying f�z = �fz: Suppose that a continuous function g : 
 ! C with locally square
integrable derivatives also satis�es the Beltrami equation g�z = �gz in 
: Then there exists
a holomorphic function ' : 
0 ! C so that g = ' Æ f:

Proof. More generally, if g�z = �gz; by combining (3.6) with (3.7), the Beltrami coeÆcient
of ' = g Æ f�1 is given by �

�gÆf�1

�
Æ f =

� � �

1� ���

fz

fz
:

Thus, if � = �; we have (')�z = 0: From Weyl's lemma, the conclusion follows.

3.16. De�nition of quasiregular mappings. A continuous function g : 
 ! C with
locally square integrable derivatives is called quasiregular if there exists a measurable
function � on 
 with k�k1 < 1 such that g�z = �gz a.e. in 
: By the above theorem, g
is quasiregular if and only if g decomposes into the form g = ' Æ f; where f : 
 ! 
0 is
a quasiconformal mapping and ' : 
0 ! C is a holomorphic function. Note that gz 6= 0
a.e. in 
; and hence, the coeÆcient � is determined by g; unless g is constant.
For quasiregular mappings, we refer to [9] and [13].
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3.17. Continuity on Beltrami coeÆcients. Suppose that a sequence of measurable
functions �n; n = 1; 2; : : : ; on C satis�es k�nk1 � k(< 1) for all n and �n ! � a.e. for

some �: Then the normalized �n-conformal homeomorphisms w�n : bC ! bC converge to
w� uniformly on bC :
See, for instance, [4].

3.18. Beltrami coeÆcients with parameters. We often encounter the situation that
the Beltrami coeÆcients in question have parameters. In practice, it is important to see
dependence of the solutions of Beltrami equations on those parameters. A typical and
important case is as follows. Let �t be a family of Beltrami coeÆcients on C parametrized
by t over a domain D � C : The family is said to be holomorphic if the mapping t 7! �t
is holomorphic from D into the unit ball of the complex Banach space L1(C ): In other
words, for each t0 2 D; the Beltrami coeÆcient �t is written in the form

�t = �t0 + (t� t0)� + jt� t0j"t;(3.8)

where � 2 L1(C ) and k"tk1 ! 0 as t! t0:
We set

�!(z) = �
1

�

ZZ
C

z(z � 1)

�(� � 1)(� � z)
!(�)d�d�

and ��;� = �! Æ f; where f is the normalized �-conformal homeomorphism and

! =

�
�

1� j�j2
fz

fz

�
Æ f�1:

Note that the quantity ��;� is linear in �:

3.19. Thoerem (Holomorphic dependence on parameters). Let �t be a holomor-
phic family of Beltrami coeÆcients over D: Then w�t(z) is holomorphic in t 2 D for a
�xed z 2 C : Moreover, _w�t0 (z) = limt!t0(w

�t(z) � w�t0 (z))=(t � t0) = ��t0 ;�(z) if �t has
the expansion in (3.8) and the convergence is uniform on each compact set in C :

For the proof and more re�ned results, see [4].

4. The Ahlfors five island theorem

In this section, we give an exposition of the cerebrated Ahlfors �ve island theorem based
on Bergweiler [6].

4.1. Some terminology. Let f : 
! bC be a meromorphic function. For a given Jordan
domain D in bC ; a connected component D0 of f

�1(D) is called a simple island over D if
f : D0 ! D is a conformal homeomorphism.

4.2. Theorem (Ahlfors �ve island theorem). Let D1; : : : ; D5 be Jordan domains inbC whose closures are pairwise disjoint. Every non-constant meromorphic function f :

C ! bC has a simple island over Dj for some j = 1; : : : ; 5:

The following statement is also known (see Exercise 11).
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4.3. Theorem (Ahlfors). Let D1; D2; D3 be bounded Jordan domains in C whose clo-
sures are pairwise disjoint. Every non-constant entire function f : C ! C has a simple
island over Dj for some j = 1; 2; 3:

4.4. Bergweiler's formulation. In what follows, let Dj; j = 1; 2; : : : ; q; denote Jordan
domains which have pairwise disjoint closures. We denote by FA(
; fDjg

q
j=1) the family

of all meromorphic functions f : 
 ! bC which have no simple islands over Dj for any
j = 1; : : : ; q: Then the Ahlfors �ve island theorem says that FA(C ; fDjg

5
j=1) consists of

only the constant functions.
Similarly, for given distinct points a1; : : : ; aq in bC ; let FN(
; fajg

q
j=1) denote the family

of all meromorphic functions f : 
 ! bC which have no simple aj-points for every j =
1; : : : ; q: Then the values aj are said to be totally rami�ed.
We consider now the following four assertions:

A1. The family FA(
; fDjg
5
j=1) is normal for every domain 
 � C :

A2. The family FA(C ; fDjg
5
j=1) consists of only the constant functions.

N1. The family FN(
; fajg
5
j=1) is normal for every domain 
 � C :

N2. The family FN(C ; fajg
5
j=1) consists of only the constant functions.

The second assertion is just a rephrase of the Ahlfors �ve island theorem. The last two
assertions were proved by R. Nevanlinna in 1920's. Our aim in the rest of the present
section is to give a proof for the above four assertions.

4.5. A1 ) N1 and A2 ) N2. For given a1; : : : ; a5; take a suÆciently small disks
D1; : : : ; D5 such that aj 2 Dj: Because FA(
; fDjg

5
j=1) � FN(
; fajg

5
j=1); assertions N1

and N2 follows from A1 and A2, respectively.

4.6. Bloch's principle. Next we show equivalence of assertions X1 and X2 for X=A or
N. This kind of equivalence is often called Bloch's principle.
For the sake of brevity, we shall use the symbolF(
) to designate the familyFA(
; fDjg

5
j=1)

or FN(
; fajg
5
j=1):

To deduce X2 from X1 is simple. Indeed, if f 2 F(C ) is non-constant, then the family
of functions f(nz); n = 1; 2; : : : ; is not normal at the origin. In order to deduce X1 from
X2, we have just to use Zalzman's theorem, which ensures the existence of a non-constant
function f 2 F(C ) under the hypothesis that F(
) is not normal.

4.7. N2 ) A2. We assume that there is a non-constant function f in FA(C ; fDjg
5
j=1):

We may assume that the closure of Dj does not contain 1 for every j: Fix �ve distinct
values a1; : : : ; a5 2 C and consider the disks �j(") = fjz� ajj < "g for 0 < " < minfjaj�
akj; j 6= kg: It is obvious that there is a quasiconformal mapping  " : C ! C such that
 "(Dj) � �j(") for all j = 1; : : : ; 5: Let �" be the Beltrami coeÆcient of the quasiregular
mapping  "Æf: Then, the measurable Riemann mapping theorem guarantees the existence
of normalized �"-conformal homeomorphism �" : C ! C : By construction, we see that
g" =  " Æ f Æ �" is a meromorphic function contained in FA(C ; f�j (")g

5
j=1):

We take now a sequence "n tending to zero. We may assume that the sequence g"n is
not normal, because otherwise one may replace it by g"n(Mnz) for a suitable sequence Mn

tending to 1: Zalzman's theorem yields now that, passing to a subsequence if necessary,
g"n(zn + �nz) converges to a non-constant g in C for some sequences zn and �n: We see
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that g 2 \1n=1FA(C ; f�j ("n)g
5
j=1) = FN(C ; fajg

5
j=1): This violates the validity of assertion

N2.

4.8. Lemma (Schwarz lemma for square roots). Let F be a holomorphic function
on the unit disk D : Suppose that F has only multiple zeros and that jF j < 1 in D : Then
jF 0(0)j2 � 4jF (0)j:

If one could take a holomorphic square root G of F; the above inequality is nothing
but the assertion jG0(0)j � 1: The proof uses a result of Ahlfors on the ultrahyperbolic
metrics [2].

Proof. By approximating F (z) by F (rz); we may assume that F is holomorphic on a
neighbourhood of the closed unit disk and jF j < 1 there. Put

u(z) = log
jF 0(z)j

2
p
jF (z)j(1� jF (z)j)

and v(z) = log
1

1� jzj2
:

Note that u(z)! �1 when z approaches to a zero of F with multiplicity at least three,
while u(z) is �nite and smooth at any other points containing zeros of F with multiplicity
two. Also note that v(z) ! 1 as jzj ! 1: Therefore, the function w = u � v takes its
maximum at some point z0 in D ; where w is smooth. Then �w(z0) � 0: On the other
hand, since �u = 4e2u and �v = 4e2v; we see that �w(z0) = 4(e2u(z0)� e2v(z0)); and thus,
u(z0) � v(z0): By the choice of z0; we obtain u(z)�v(z) = w(z) � w(z0) = u(z0)�v(z0) �
0: In particular, u(0) � v(0); which implies the desired inequality.

4.9. Proof of N1. We assume that assertion N1 is false. Then, by Zalcman's theorem,
there exists a non-constant f 2 FN(C ; fajg

5
j=1) with bounded spherical derivative. We

may assume that none of aj's is 1: Then consider the entire function

g(z) =
f 0(z)2Q5

j=1(f(z)� aj)
:

Since f# is bounded, g is small when f is large. In particular, g is non-constant and there
is a sequence zn; n = 1; 2; : : : ; so that g(zn)!1; and hence f(zn) is bounded.
We consider the function hn(z) = f(z+ zn): Since h

#
n (z) = f#(z+ zn); the sequence hn

forms a normal family by Marty's theorem. Thus, we may assume that hn converges to
a meromorphic function h : C ! bC locally uniformly. Since f(zn) is a bounded sequence,
h(0) is a �nite value. If h(0) 6= aj for all j; then g(zn) ! h0(0)2=

Q5
j=1(h(0) � aj) 6= 1;

which is a contradiction. Thus, h(0) = aj for some j: On the other hand, the sequence

Gn(z) = g(z+ zn) of entire functions converges to H(z) = h0(z)2=
Q5

j=1(h(z)� aj) locally
uniformly in the spherical metric. SinceGn(0)!1; by Lemma 2.2,H must be identically
1: Hence h(z) � aj:
Since jhn(z)�ajj < 1 on D for suÆciently large n; by Lemma 4.8, we obtain jf 0(zn)j

2 �
4jf(zn)� ajj and hence

jg(zn)j �
4Q

k 6=j jf(zn)� akj
;

which is a contradiction because f(zn)! aj and g(zn)!1:
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5. Exercises

1. Show Lemma 1.2.
2. Give an explicit expression of the stereographic projection from C to the sphere
f(x1; x2; x3); x

2
1+x

2
2+(x3� 1=2)2 = 1=22g: Using it, deduce that the induced metric

on bC from the Euclidean metric on R
3 coincides with �(z)jdzj:

3. Give a proof to Lemma 2.2.
4. Let fn; n = 1; 2; : : : ; be a locally uniformly convergent sequence of meromorphic

functions on 
: Suppose that a sequence gn : Dn ! bC ; n = 1; 2; : : : ; of meromorphic

functions converges to g : D ! bC locally uniformly in D and that fn(
) � Dn for
n = 1; 2; : : : : Prove that the composite functions gn Æ fn converge to g Æ f locally
uniformly on 
:

5. Show that the space C(
; X) introduced in x2.4 is metrizable in the following way.
Let 
n; n = 1; 2; : : : ; be an increasing sequence of relatively compact subdomains
of 
 so that [1n=1
n = 
: Let Æn be a pseudo-distance on C(
; X) de�ned by

Æn(f; g) = sup
z2
n

d(f(z); g(z))

for f; g 2 C(
; X): Then prove that

Æ(f; g) =
1X
n=1

2�n
Æn(f; g)

1 + Æn(f; g)

gives a distance on C(
; X): Finally, check that the distance Æ gives to C(
; X) the
same topology as the compact-open topology.

6. Show that the group M�ob of M�obius transformations is not normal in any subdomain
of the Riemann sphere.

7. Fix three points z1; z2; z3 of bC and take a positive number Æ > 0: Is the family
F = ff 2 M�ob;minfd#(f(zj); f(zk)); j; k = 1; 2; 3; j 6= kg � Æg normal in bC ?

8. Let F be a family of holomorphic functions on a domain 
: If F is normal as
holomorphic functions, then prove that the family F 0 = ff 0; f 2 Fg is normal, too.
Can one say the same thing if one replaces \holomorphic" by \meromorphic" in the
above?

9. In Theorem 2.13 we needed to assume the domain 
 to be a subdomain of C : In the
general case when 
 � bC ; it is natural to consider the \spherical density of spherical
di�erential" given by

f [(z) =
(1 + jzj2)jf 0(z)j

1 + jf(z)j2
:

Deduce a criterion for normality similar to Marty's theorem.
10. Prove the following version of the Schwarz lemma: Let F : D ! D � = D n f0g be a

holomorphic map. Then jF 0(0)j � 2jF (0)j log(1=jF (0)j) holds.
Hint: Use the hyperbolic metric.

11. Prove Theorem 4.3 by showing the following statement: Let Dj; j = 1; 2; 3; be

Jordan domains and a4 be a point in bC such that any two of these have disjoint
closures. Let HA(
) = HA(
; D1; D2; D3; a4) denote the family of all meromorphic
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functions which has no simple island in 
 over Dj for all j = 1; 2; 3 and which omits
the value a4: Then HA(C ) contains only constant functions.

Hint: Letting aj 2 Dj; j = 1; 2; 3; and assuming aj 6= 1; j = 1; 2; 3; 4; consider
the function

g(z) =
f 0(z)4

(f(z)� a1)2(f(z)� a2)2(f(z)� a3)2(f(z)� a4)3
:

6. References

6.1. Complex Dyanmics. It would be nice to refer the reader to several textbooks on
the complex dynamics although this preliminary course will not treat it at all.
Beardon [5] takes analytic approach, which enables us to easily understand the contents.

On the other hand, the lecture note [11] by Milnor has more geometric 
avor. The
book [8] by Carleson and Gamelin is somewhat hard to read but useful even for experts.
McMullen's book [10] gives us keen insights and provides the idea of renormalization. The
recent book [12] deals also with entire functions and higher dimensional cases.

6.2. Quasiconformal mappings. Basic references are Lehto-Virtanen [9] and Ahlfors
[1]. The outstanding paper [4] by Ahlfors and Bers is worth reading even though there
are many misprints.

6.3. Basic materials. Ahlfors' book [3] is an excellent textbook on complex analysis
widely covering the necessary materials. In particular, as to the basic properties of normal
families, the reader should consult it. The book [14] by Schi� is also a good source of the
concept of normality. For basic properties of the hyperbolic metric, we refer to the book
[2] by Ahlfors.
Concerning the Ahlfors �ve island theorem, articles [6] and [7] by Bergweiler provide a

simple proof as well as references.
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