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MAPS

TOSHIYUKI SUGAWA

Abstract. We provide an approach to the proof of positivity of the Taylor coefficients
for a given conformal map of the unit disk onto a plane domain. This short note is a
summary of the joint work [2] with Stanis lawa Kanas.

1. Introduction

If a univalent function f(z) = a0+a1z+a2z
2 + · · · in the unit disk D = {z ∈ C; |z| < 1}

has non-negative Taylor coefficients about the origin, namely, ak ≥ 0 for all k ≥ 0, various
sharp estimates can easily be deduced. For example, one can show the sharp inequalities

|f(z) − a0 − a1z − · · · − akz
k| ≤ f(|z|) − a0 − a1|z| − · · · − ak|z|k

and

|f (k)(z)| ≤ f (k)(|z|)
for k = 0, 1, 2, . . . . Note that this sort of inequalities are, in general, not easy to establish.

As one immediately sees, a necessary condition for a univalent function f to have non-
negative Taylor coefficients is that the image domain Ω = f(D) is symmetric in the real
axis. Under the assumption of this symmetric property, however, it seems to be difficult
to give a sufficient condition for non-negativity of the coefficients in terms of the shape
of Ω. For instance, the convexity of Ω is not sufficient. In fact, for a constant 0 < c < 1,
the function

f(z) =
z

1 + cz
= z − cz2 + c2z3 − c3z4 + · · ·

maps D univalently onto a disk but has a negative coefficient. (In general, when f(z) has

non-negative Taylor coefficients, the function f̂(z) = −f(−z) has a negative coefficient
unless f is an odd function.)

In this note, we will explain one approach to show positivity of the Taylor coefficients
of a specific conformal map of the interior of a conic section.

2. Conformal mappings onto domains bounded by conic sections

For k ∈ [0,∞), we set

Ωk = {u + iv ∈ C; u2 > k2(u − 1)2 + k2v2, u > 0}.
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Note that 1 ∈ Ωk for all k. Ω0 is nothing but the right half plane. When 0 < k < 1, Ωk is
the unbounded domain enclosed by the right half of the hyperbola(

u + k2/(1 − k2)

k/(1− k2)

)2

− v2

1/(1 − k2)
= 1

with focus at 1. Ω1 becomes the unbounded domain enclosed by the parabola

v2 = 2u − 1

with focus at 1. When k > 1, the domain Ωk is the interior of the ellipse(
u − k2/(k2 − 1)

k/(k2 − 1)

)2

+
v2

1/(k2 − 1)
= 1

with focus at 1. For every k, the domain Ωk is convex and symmetric in the real axis.
Note also that Ωk1 ⊃ Ωk2 if 0 ≤ k1 ≤ k2.

Kanas and Wísniowska [3] treated the family Ωk in their study of k-uniformly convex
functions and gave the explicit formulae for the conformal homeomorphisms pk : D → Ωk

determined by pk(0) = 1 and p′k(0) > 0. Here, an analytic function f(z) in the unit disk
with f(0) = 0, f ′(0) = 1 is called k-uniformly convex if the function 1 + zf ′′(z)/f ′(z)
maps the unit disk analytically into Ωk. A function is 1-uniformly convex precisely when
it is uniformly convex (see [4]).

In order to state their result, we prepare some notation. Let K(z, t) and K(t) be the
normal and complete elliptic integrals, respectively, i.e.,

K(z, t) =

∫ z

0

dx√
(1 − x2)(1 − t2x2)

and K(t) = K(1, t). The quantity

µ(t) =
πK(

√
1 − t2)

2K(t)

is known as the modulus of the Groetszch ring D \ [0, t] for 0 < t < 1. Note that µ(t) is a
strictly decreasing smooth function. For details, see [1].

Proposition 1 (Kanas-Wísniowska [3]). The conformal map pk : D → Ωk with pk(0) = 1
and p′k(0) > 0 is given by

pk(z) =




(1 + z)/(1− z) if k = 0,

(1 − k2)−1 cosh[Ck log(1 +
√

z)/(1 −√
z)] − k2/(1 − k2) if 0 < k < 1,

1 + (2/π2)[log(1 +
√

z)/(1 −√
z)]2 if k = 1,

(k2 − 1)−1 sin[CkK((z/
√

t− 1)/(1 −√
tz), t)] + k2/(k2 − 1) if 1 < k,

where Ck = (2/π) arccos k for 0 < k < 1 and Ck = π/2K(t) and t ∈ (0, 1) is chosen so
that k = cosh(µ(t)/2) for k > 1.
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3. Main Results

For each k ∈ [0,∞), we write

pk(z) = 1 + A1(k)z + A2(k)z2 + · · ·
for the conformal mapping pk of D onto Ωk with pk(0) = 1 and p′k(0) > 0. Since Ωk lies in
the right half-plane, Carathéodory’s theorem yields that |An(k)| ≤ 2 holds for each n ≥ 1
and k ∈ [0,∞). Our main result is the following.

Theorem 2. An(k) > 0 for all n ≥ 1 and k ∈ [0, +∞).

Since p0(z) = 1 + 2z + 2z2 + 2z3 + · · · and

p1(z) = 1 +
2

π2

(
z +

z2

3
+

z3

5
+ · · ·

)2

,

the assertion of the theorem is trivial for k = 0 and k = 1. When 0 < k < 1, the assertion
is also trivial because the function cosh has the non-negative Taylor coefficients.

In what follows, we consider the cases when k > 1. Due to complexity of the represen-
tation of pk given above for k > 1, we try to simplify it.

We now consider the conformal mapping J of D onto Ĉ \ [−1, 1] defined by f(z) =
(z + z−1)/2. Since

J(e−s+it) = cosh s cos t − i sinh s sin t,

the circle |z| = e−s is mapped by J onto the ellipse Es given by( u

cosh s

)2

+
( v

sinh s

)2

= 1

for s > 0 and the radial segment (0, eit) is mapped by J into the component Ht of the
hyperbola given by ( u

cos t

)2

−
( v

sin t

)2

= 1, u cos t > 0,

for t ∈ R with (2/π)t /∈ Z.
Let Tn be the Chebyshev polynomial of degree n, i.e., Tn(cos θ) = cos(nθ). Then it is

well known that the n-fold mapping z 7→ zn is conjugate under J to Tn, in other words,

J(zn) = Tn(J(z))

holds in |z| < 1. In particular, one can see that the ellipse Es is mapped by Tn onto Ens

and that the hyperbola Ht is mapped by Tn onto Hnt.
Applying the above argument to T2(w) = 2w2 − 1, we obtain the following.

Lemma 3. The Chebyshev polynomial T2(w) = 2w2 − 1 maps the domain bounded by
Ht and Hπ−t onto the connected component of C \ H2t containing −1. Also, T2 maps the
domain bounded by the ellipse Es onto the domain bounded by E2s.

On the basis of the above lemma, we can obtain another representation of pk.
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Theorem 4. For k > 0, the function pk is written by pk(z) = 1 + Qk(
√

z)2, where

Qk(z) =




√
2

1−k2 sinh(Ck arctanhz) if 0 < k < 1,√
1

2π2 arctanhz if k = 1,√
2

k2−1
sin

(
C ′

kK(z/
√

s, s)
)

if 1 < k.

Here, Ck = (2/π) arccos k when 0 < k < 1, and s ∈ (0, 1) is chosen so that k = cosh µ(s)
and C ′

k = (π/2)/K(s) when k > 1.
Furthermore, the function Qk is odd and maps the unit disk conformally onto the domain

Dk = {x + iy : (k − 1)x2 + (k + 1)y2 < 1}.
Note that Dk is the inside of a hyperbola when k < 1 and Dk is the interior of an ellipse

when k > 1. When k = 1, the domain Dk becomes the parallel strip −1/
√

2 < Im z <
1/
√

2. Also note that Dk is invariant under the involution z 7→ −z.

4. Rough idea of the proof

We indicate here how to deduce Theorem 2. A detailed exposition will appear in [2].
In order to prove positivity of the Taylor coefficients of pk, it is enough to show that of

Qk thanks to Theorem 4. Though the assertion is trivial in the case when 0 < k < 1, we
first treat this case in order to highlight an idea of the present method. When 0 < k < 1,
one can check that w = Qk(z) satisfies the linear differential equation

(1 − z2)2w′′ − 2z(1 − z2)w′ −C2
kw = 0(1)

in D.

Lemma 5. Let Q(z) be an analytic solution of (1) in D with Q(0) = 0 and Q′(0) > 0.
Then Q has Taylor expansion in the form Q(z) =

∑∞
n=0 Bnz

2n+1 and the coefficients
satisfy the inequalities

(2n + 1)Bn − (2n − 1)Bn−1 > 0 and Bn > 0(2)

for each n ≥ 1.

Proof. By the linear differential equation (1), one obtains the recursive formula for coef-
ficients

(2n + 2)(2n + 3)Bn+1 −
{
2(2n + 1)2 + C2

k

}
Bn + 2n(2n − 1)Bn−1 = 0

for n ≥ 0, here we have set B−1 = 0. We now suppose that the assertion is true up to n.
Then, by the above formula, we get

(2n + 2)
{
(2n + 3)Bn+1 − (2n + 1)Bn

}
=

{
2(2n + 1)2 − (2n + 2)(2n + 1) + C2

k

}
Bn − 2n(2n − 1)Bn−1

≥{
2(2n + 1)2 − (2n + 2)(2n + 1)

}
Bn − 2n(2n − 1)Bn−1(3)

=2n
{
(2n + 1)Bn − (2n − 1)Bn−1

}
> 0

Therefore, the assertion is also true for n + 1. By induction, the proof is done.
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In the case when k > 1, the function w = Qk(z) satisfies the similar differential equation

(1 − sz2)(1 − z2/s)w′′ − 2z((s + s−1)/2 − z2)w′ +
C ′

k
2

s
w = 0

in D, where s ∈ (0, 1) is chosen so that k = cosh µ(s) and C ′
k = π/2K(s). Note that Qk(z)

satisfies Qk(0) = 0 and Q′
k(0) > 0.

The above two differential equations can also be unified into the form

(1 − 2Mz2 + z4)w′′ − 2z(M − z2)w′ − cw = 0,(4)

where M = 1 and c = C2
k for 0 < k < 1 and M = (s + s−1)/2 ≥ 1 and c = −C ′

k
2/s =

−π2/4sK(s)2 for k > 1. Let w = Q(z) be the solution of the equation with the initial
condition Q(0) = 0 and Q′(0) = 1. In the same way as above, one obtains the relations
for the coefficients of Q(z) =

∑∞
n=0 Bnz2n+1 :

(2n + 2)(2n + 3)Bn+1 −
{
2M(2n + 1)2 + c

}
Bn + 2n(2n − 1)Bn−1 = 0(5)

for n ≥ 0, where we also have set B−1 = 0.
In the case when k > 1, however, the above argument breaks down at the inequality

(3) because now c < 0. In fact, the coefficients Bn tend rapidly to 0 as n → ∞, therefore,
some renormalization techniques are required in this case. See [2] for the details.
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