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Abstract. We consider a second-order linear homogenous ordinary differential equa-
tions in connection with the Teichmüller space of a four-times punctured sphere. Interests
will be focused on the mysterious relation between the shape of the Teichmüller space
and the Fibonacci sequence. The monodromy homomorphism induced by the differen-
tial equations plays a decisive role in our framework. This note is based on the author’s
paper [7] and the joint paper [3] with Y. Komori.

1. An ordinary differential equation

Let Y be a four-times punctured sphere Ĉ\{0, 1,∞, λ} with hyperbolic metric ρY (z)|dz|
of Gaussian curvature −4. It is known that the space B2(Y ) of holomorphic quadratic

differentials ψ(z)dz2 with finite norm

‖ψ‖Y = sup
z∈Y

ρY (z)
2|ψ(z)|

is one dimensional vector space over C. We may, for instance, take

ψ0(z)dz
2 =

dz2

z(z − 1)(z − λ)

as a basis of B2(Y ). Let π : D → Y be a holomorphic universal covering map of the unit

disk D = {z ∈ C : |z| < 1} onto Y and let Γ be the covering transformation group. Then

Γ is a Fuchsian group of the first kind acting on D. It can be seen that the Schwarzian
derivative Sπ−1 of a local inverse of π is independent of the choice of branch and even of

the particular choice of π. Hence it defines a (single-valued) analytic function νY on Y.

Here the Schwarzian derivative Sf of f is defined by

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

The function νY is sometimes called the uniformizing connection of Y. Then it is known
that νY has the form

νY (z) =
1

2z2(z − 1)2
+

1

2(z − λ)2
+

c(λ)

z(z − 1)(z − λ)
,
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where c(λ) is a constant determined by λ (see, for instance, [1, Ch. X, p. 492]). This

constant is known as an accessory parameter. It is generally difficult to compute c(λ). A

method of numerical computation of c(λ) is given in [3] and the method will be indicated

in Remark 2.
We now consider the second-order homogeneous linear ordinary differential equation

2y′′ + (νY + tψ0)y = 0,(1.1)

where t is a complex parameter. We fix a base point z0 in Y and let y0 and y1 are

fundamental (local) solutions of (1.1) around z0, namely, they are determined by the

initial conditions y0(z0) = 1, y′0(z0) = 0, y1(z0) = 0 and y′1(z0) = 1. It is easy to see that

the Wronskian y0y
′
1 − y′0y1 is identically 1. For a curve γ with initial and terminal points

at z0, the solutions y0 and y1 can be analytically continued along γ to, say, ỹ0 and ỹ1,
respectively. These are written as linear combinations of y0 and y1, say,

ỹ1 = ay1 + by0

ỹ0 = cy1 + dy0,

where a, b, c, d are complex constants. Note that ad − bc = 1 holds. By the monodromy

theorem, these constants depend only on the homotopy class [γ] of γ. In this way, we

obtain a homomorphism χt : π1(Y, z0) → SL(2,C) satisfying

χt : [γ] 7→
(
a b
c d

)
.

The homomorphism is called the monodromy homomorphism or holonomy representation

of π1(Y, z0) with respect to tψ0. We write Gt = χt(π1(Y, z0)).

In particular, when t = 0, the quotient f = y1/y0 of fundamental solutions to (1.1) has

Schwarzian derivative Sf = νY , and thus, f = L ◦ π−1 locally, where L is a Möbius trans-

formation. Therefore, the image χ0(π1(Y, z0)) is Möbius conjugate with the uniformizing

Fuchsian group Γ of Y.

Remark 1. Up to Möbius conjugate, the group G0 may be regarded as a lift of Γ ⊂
PSU(1, 1) to SU(1, 1). This lift is determined by the condition trχ0(γ) = −2 for every

simple closed curve rounding about a puncture of Y.

Let T̃ (Y ) be the set of those elements in B2(Y ) of the form tψ0 for which Gt is a

quasiconformal deformation of G0. The connected component of T̃ (Y ) which contains the

origin is called (the Bers embedding of) the Teichmüller space of Y and will be denoted

by T (Y ). (Rigorously, our T (Y ) is the Teichmüller space of the mirror image Y ∗ of Y. To

avoid confusion, we adopt a different definition here from the standard one.)

It is known that T (Y ) is a Jordan domain with {ψ ∈ B2(Y ) : ‖ψ‖Y < 2} ⊂ T (Y ) ⊂
{ψ ∈ B2(Y ) : ‖ψ‖Y < 6} (see [3]). The quantities

ι(T (Y )) = inf{‖ψ‖Y : ψ ∈ ∂T (Y )} and o(T (Y )) = sup{‖ψ‖Y : ψ ∈ ∂T (Y )}
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are called the inner radius and the outer radius of T (Y ), respectively. Therefore, we have

2 ≤ ι(T (Y )) ≤ o(T (Y )) ≤ 6. (In fact, these inequalities are all strict.)

2. Pinching deformation along a simple closed curve

Let τ be a complex number with Im τ > 0. Then T = C/〈1, τ 〉 becomes a complex

torus, where 〈1, τ 〉 denotes the lattice group generated by 1 and τ over Z. We denote by

[z] the equivalence class represented by z ∈ C with respect to the action of the lattice.

Let ℘ be the Weierstrass ℘-function with period lattice 〈1, τ 〉 and set e1 = ℘(1/2), e2 =

℘(τ/2), e3 = ℘((1 + τ )/2). As is well known, the quantity

λ(τ) =
e3 − e2

e1 − e2

is an elliptic modular function. We now choose τ so that λ(τ) = λ. Then the mapping

p : T → Ĉ defined by p([z]) = (℘(z) − e2)/(e1 − e2) is a two-sheeted branched covering

map of T onto Ĉ with branch point of order 2 at [0], [1/2], [τ/2], [(1 + τ )/2]. Therefore,

the four-times punctured torus Z = T \ {[0], [1/2], [τ/2], [(1 + τ )/2]} is a two-sheeted

unbranched covering space over Y.
A simple closed curve is called peripheral if it is homotopic to either a point or a

puncture. Let γ : [0, 1] → Y be a non-peripheral simple closed curve in Y and γ̃ be a

lift of γ via the composition of covering maps C \ 〈1/2, τ/2〉 → Z → Y. The difference

γ̃(1) − γ̃(0) of the terminal point and the initial point of γ̃ has the form m + nτ for

relatively prime integers m and n. The ratio r = n/m ∈ Q̂ = Q ∪ {∞} is called the slope

of γ. It is known that the ratio determines the homotopy class of γ and that any number

in Q̂ is realized as the ratio of a non-peripheral simple closed curve in Y.

Let [γr] be an element of π1(Y, z0) with slope r ∈ Q̂ and define the function σr to be

σr(t) = tr 2χt([γr]). Note that σr is an entire function and σr(0) > 4.

Remark 2. The origin is a special point where the entire functions σr take real values
simultaneously. In turn, this property can be used to compute the accessory parameter

c(λ). See [3] for details.

We next recall fundamental facts about Farey triangles (cf. [6]). For a more detailed

explanation, see [3]. The reader also finds a good account for Farey sequences in [2] as

well as an interesting historical remark.

For three points a, b, c in R̂, we denote by ∆(a, b, c) the hyperbolic triangle formed by

three hyperbolic geodesics in the upper half plane H connecting two of the three points

a, b and c. Let ∆ = ∆(0, 1,∞). Then H is tessellated by ∆ and its conjugates by the

modular group PSL(2,Z). Note that the stabilizer of ∆ in PSL(2,Z) consists of three

elements and permutes the vertices of ∆ cyclically. Each triangle which is conjugate with

∆ by the action of PSL(2,Z) is called a Farey triangle. The initial Farey triangle ∆ and

its reflection ∆′ = ∆(0,−1,∞) in the imaginary axis form a fundamental domain of the
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modular group Γ2 = {±C ∈ PSL(2,Z) : C ≡ I mod 2} of level 2. We will say that both

∆ and ∆′ are of level 0. A Farey triangle which shares a side with that of level 0 will be
called of level 1 unless it is of level 0. Similarly, a Farey triangle which shares a side with
that of level n will be called of level n+ 1 unless it is of level ≤ n. It is important to note
that the corresponding graph to the above tessellation is a tree, namely, there is no closed
circuit.

It is well known that the orbit of 0 under the action of PSL(2,Z) coincides with Q̂. We

denote by F̃(n) the set of rationals which appear as vertices of Farey triangles of level ≤ n.

Set F(n) = F̃(n) \ F̃(n− 1) for n = 0, 1, . . . . For instance, F(0) = {−1, 0, 1,∞}, F(1) =

{−2,−1/2, 1/2,2}, F(2) = {−3,−3/2,−2/3,−1/3, 1/3,2/3, 3/2, 3} and so on. We note

that #F(n) = 2n+1 for n ≥ 1. An element r in F(n) will be called of level n and designated

by level(r) = n. Note that if p1/q1 and p2/q2 are of level ≤ n and if p1q2 − q1p2 = ±1,

then (p1 + p2)/(q1 + q2) is of level ≤ n+ 1.

Note that the rationals ±rn and ±1/rn belong to F(n), where rn = bn+1/bn and bn is the

n-th Fibonacci number, namely, bn is determined by b0 = 1, b1 = 1, bn = bn−1 + bn−2 (n =

2, 3, 4, . . . ).

It is shown in [3] that the connected component Pr of the inverse image σ−1
r ([4, σr(0)])

containing 0 is a closed analytic Jordan arc for each rational r. The arc Pr is called

the pleating ray with slope r. The the other end point of Pr , denoted by β(r), lies on

the boundary of the Teichmüller space T (Y ) and corresponds to a cusp group. The

deformation along Pr can be regarded as a pinching deformation of the Riemann surface
Y along the hyperbolic geodesic with slope r.

When λ = 1/2, the following observation was made in [7] by the aid of Mathematica

for, at least, small n’s.

Conjecture 1. When λ = 1/2, then the following relation holds for each n :

max
r∈F̃(n)

‖β(r)‖ = ‖β(rn)‖.

Note also that ‖β(rn)‖ = ‖β(−rn)‖ = ‖β(1/rn)‖ = ‖β(−1/rn)‖ by symmetry in the

case λ = 1/2. It is well known that rn converges to the golden ratio (
√

5−1)/2. Since cusps

are dense in the boundary [5], if the above conjecture is valid, then the next conjecture is

valid, too.

Conjecture 2 ([7]). If λ = 1/2, then

o(T (Y )) = ‖β((
√

5 − 1)/2)‖
holds, where β((

√
5−1)/2) is the end point of the pleating ray with irrational slope (

√
5−

1)/2.

Based on the last conjecture, we numerically obtained o(T (Y )) ≈ 2.9386 when λ = 1/2.

It is naturally expected that, for a general λ, a similar statement would hold for some
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irrational number r whose continued fraction expansion has the same tail as that of the
golden ratio.

At present, we have no idea to prove the above conjectures in a rigorous way. It is
also interesting to see the asymptotic behaviour of the monodromy homomorphism χt in

connection with the configuration of exotic projective structures (see [4]). We end this

note with the specialized problem.

Problem 3. Investigate the asymptotic behaviour of the entire function σr(t) as t → ∞
for an extended rational number r ∈ Q̂.
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