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Abstract. We introduce universally convex, starlike and prestarlike functions
in the slit domain C \ [1,∞), and show that there exists a very close link to
completely monotone sequences and Pick functions.

1. Introduction

1.1. Completely monotone sequences. A sequence {ak}k≥0 of non-negative
real numbers, a0 = 1, is called completely monotone 1 (c.m.) if

∆nak := ∆n−1ak − ∆n−1ak+1 ≥ 0, k ≥ 0, n ≥ 1,

where ∆0 is the identity operator: ∆0a = a. It is a well-known result of Hausdorff
[6] that {ak}k≥0 is c.m. if and only if there is a probability measure2 µ on [0, 1]
such that

ak =

∫ 1

0

tk dµ(t), k ≥ 0,

or, equivalently,

F (z) =

∞∑

k=0

ak z
k =

∫ 1

0

dµ(t)

1 − tz
.

Let T denote the set of such functions F . They are analytic in the slit domain
Λ := C\[1,∞) and also belong to the set of Pick functions P (−∞, 1) (see Donoghue
[5] for a detailed account of Pick functions). The study of c.m. sequences has a
long history and they are of great importance in various fields of mathematics
and statistics. It is the aim of this paper to exhibit a strong connection between
these sequences and a class of functions well-known in geometric function theory.
This leads, on the sequences side, to the construction of apparently new operators
preserving c.m. sequences and to the explicit construction of c.m. sequences.
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1.2. Prestarlike functions. Let H(Ω) denote the set of analytic functions in a
domain Ω. For domains Ω containing the originH0(Ω) stands for the set of functions
f ∈ H(Ω) with f(0) = 1. We also use the notation H1(Ω) := {zf : f ∈ H0(Ω)}.
In the special case that Ω is the unit disc D := {z ∈ C : |z| < 1} we use the
abbreviations H,H0,H1, respectively.

A function f ∈ H1 is called starlike of order α (with α < 1) if

Re
zf ′(z)

f(z)
≥ α, z ∈ D,

and the set of such functions is denoted by Sα. Then, finally, a function f ∈ H1 is
called prestarlike of order α if

(1.1)
z

(1 − z)2−2α
∗ f(z) ∈ Sα,

where ‘∗’ stands for the Hadamard product of two functions in H:

g(z) =

∞∑

k=0

gkz
k, h(z) =

∞∑

k=0

hkz
k ⇒ g ∗ h(z) :=

∞∑

k=0

gkhkz
k.

The sets of these functions are denoted by Rα. For certain reasons one also intro-
duces the set R1 to consist of the functions f ∈ H1 with

Re
f(z)

z
≥ 1

2
, z ∈ D.

Prestarlike functions have a number of interesting geometric properties. For
instance, the set C of univalent functions in H1 which map D onto convex domains
equals R0, and obviously we also have R1/2 = S1/2. We refer to Ruscheweyh [15]
and Sheil-Small [18] for a description of the essentials of the theory of prestarlike
functions. For the present paper the most relevant information is the following
result.

Lemma 1.1. For α < β ≤ 1 we have Rα ⊂ Rβ.

While working with prestarlike functions and convolutions the following notation
turned out to be useful:

(Dβf)(z) :=
z

(1 − z)β
∗ f, β ≥ 0.

In particular, for β = n ∈ N we have

Dn+1f =
z

n!
(zn−1f)(n).

Using this operator we find that a function f ∈ H1 is prestarlike of order α ≤ 1 if
and only if

(1.2)
D3−2αf

D2−2αf
∈ P .

Here

P = {f ∈ H0 : Re f(z) >
1

2
, z ∈ D},

or, equivalently, by the Herglotz formula,

(1.3) f ∈ P ⇔ f(z) =

∫ 2π

0

dµ(t)

1 − e−itz
,
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where µ is a probability measure on [0, 2π]. One should observe that for any function
f ∈ T the restriction of f to D is in P .

1.3. Universally prestarlike functions. The basic aim of this paper, as far as
geometric function theory is concerned, is a translation of the notion of prestarlike
functions from the unit disc to other discs and half-planes containing the origin. Let
Ω be one such disc or half-plane. Then there are two unique parameters γ ∈ C\{0}
and ρ ∈ [0, 1] such that

Ω = {wγ,ρ(z) : z ∈ D}
where

wγ,ρ(z) :=
γz

1 − ρz
.

To make this relation visible, we also write Ωγ,ρ for this Ω.

Definition 1.1. Let α ≤ 1 and Ω = Ωγ,ρ for some admissible pair (γ, ρ). A
function f ∈ H1(Ω) is called prestarlike of order α in Ω if

fγ,ρ(z) :=
1

γ
f(wγ,ρ(z)) ∈ Rα.

In this paper we are not dealing with such functions specifically, but with func-
tions being prestarlike of a given order in several sets Ωγ,ρ simultaneously. Of
course, it makes no sense to ask for functions which are prestarlike in all such sets,
because then we are left with only the identity function. The situation changes
already dramatically, if we admit exactly those Ωγ,ρ which omit one given point,
for instance the point 1. Note that 1 6∈ Ωγ,ρ if and only if |γ + ρ| ≤ 1

Definition 1.2. Let α ≤ 1. A function f ∈ H1(Λ) is called universally prestarlike
of order α if and only if f is prestarlike of order α in all sets Ωγ,ρ with |γ+ ρ| ≤ 1.
The set of these functions is denoted by Ru

α.

Recall the definition of the set Λ and the family T from Section 1.1. Clearly, we
have Ru

α ⊂ H1(Λ) and the main result of this paper is

Theorem 1.1. Let α ≤ 1 and f ∈ H1(Λ). Then f ∈ Ru
α if and only if

(1.4)
D3−2αf

D2−2αf
∈ T .

This admits an explicit representation of the functions in Ru
α. If f ∈ H0 has

all its Taylor coefficients at the origin different from zero we write {f}(−1) for the
(possibly formal but) unique solution of f ∗ {f}(−1) = 1

1−z . Note that for γ > 0 we
have

Iγ(z) :=

{
1

(1 − z)γ

}(−1)

= 2F1(1, 1, γ, z),

where 2F1 stands for the hypergeometric function (see [1]).

Corollary 1.1. f ∈ H1(Λ) is universally prestarlike of order α < 1 if and only if
there exists a probability measure µ on [0, 1] such that

f(z)

z
= I2−2α(z) ∗ exp

(∫ 1

0

log
1

(1 − tz)2−2α
dµ(t)

)
.
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Note that Lemma 1.1 can be stated as: for f ∈ H1 we have

D3−2αf

D2−2αf
∈ P ⇒ D3−2βf

D2−2βf
∈ P ⇒ f(z)

z
∈ P , α < β < 1.

A combination of this with Theorem 1.1 now gives an equivalent result.

Corollary 1.2. For α < β ≤ 1 we have Ru
α ⊂ Ru

β . In particular, for f ∈ H1(Λ),

D3−2αf

D2−2αf
∈ T ⇒ D3−2βf

D2−2βf
∈ T ⇒ f(z)

z
∈ T , α < β < 1.

To make this property a little more transparent we mention that Lemma 1.1
contains an old result of Strohhäcker, namely that for f ∈ H1 we have

1 +
zf ′′(z)

2f ′(z)
∈ P ⇒ zf ′(z)

f(z)
∈ P ⇒ f(z)

z
∈ P ,

and that Corollary 1.2 implies that for f ∈ H1(Λ) we have similarly

1 +
zf ′′(z)

2f ′(z)
∈ T ⇒ zf ′(z)

f(z)
∈ T ⇒ f(z)

z
∈ T .

Clearly Corollary 1.2 can be looked at as the preservation of the c.m. property
of sequences under certain complicated operations. As a very simple example of
this kind of interpretation we mention the following result.

Corollary 1.3. Let σ, λk > 0, tk ∈ [0, 1] for 1 ≤ k ≤ n with
∑n

k=1 λk ≤ σ. Then,

Iσ(z) ∗
n∏

k=1

1

(1 − tkz)λk
∈ T .

1.4. General properties of universally prestarlike functions. The functions

f ∈ T̃ := {zF (z) : F ∈ T } have been studied for their geometric properties on
several occasions, for instance by Wirths [22], and one of his general results was

that the members in T̃ are univalent (in fact, convex in the direction of the real
axis) in the half-plane {z : Re z < 1}, but that there is no larger domain for which

univalence generally holds. The universally prestarlike functions belong to T̃ by
Theorem 1.1. Therefore this result applies to Ru

α. For α ≤ 1
2 we can do even better.

Theorem 1.2. Let f be universally prestarlike of order α ≤ 1. Then f is univalent
in the half-plane {z : Re z < 1}. If α ≤ 1

2 then f is univalent in the whole of Λ
and maps Λ onto a doman starlike w.r.t. the origin.

It is easily seen that f(z) = z is the only entire function in Ru
α for α ≤ 1.

However, Ru
1 has obviously many rational members. This changes for α ≤ 1

2 .

Theorem 1.3. The functions f(z) := z/(1 − tz), t ∈ [0, 1] are the only rational
functions in Ru

1/2.

Theorem 1.4. Let α ≤ 1 and f ∈ Ru
α. Then the functions

−f
(

z

z − 1

)
,

1

t
f(tz), t ∈ (0, 1),

belong to Ru
α as well.
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1.5. Universally starlike and convex functions. Historically the first general
classes of conformal mappings in D studied in greater detail were those which map
D onto starlike or convex domains. Therefore we include the ‘universal’ concept
also for these classes.

Definition 1.3. A function f ∈ H1(Λ) is called universally starlike (w.r.t. the
origin) if fγ,ρ belongs to S0 in D for each pair (γ, ρ) with |γ + ρ| ≤ 1.

Definition 1.4. A function f ∈ H1(Λ) is called universally convex if it maps
every half-plane containing the point 1 in its boundary and the origin in its interior
univalently onto a convex domain.

One should notice the systematical difference in these definitions, mainly based
on the fact that convexity is translation invariant, which is not the case for starlike-
ness w.r.t. the origin. The following somewhat surprising results give additional
justification for studying universally prestarlike functions of order α.

Theorem 1.5. A function f is universally starlike w.r.t. the origin if and only if
it is universally prestarlike of order 1

2 .

Theorem 1.6. A function is universally convex if and only if it is universally
prestarlike of order 0. Such f maps every disc and every half-plane contained in Λ
onto a convex domain.

Remark Since R1/2 = S1/2, the above result shows that the restriction to D of
a universally starlike function belongs to S1/2. A remarkable consequence of this
is that the fundamental Alexander theorem, namely f ∈ C ⇔ zf ′(z) ∈ S0, is no
longer valid for universally convex and universally starlike functions: f(z) = z

1−z

is universally convex but the restriction of zf ′(z) to D does not belong to S1/2,
and this shows that the (famous) Koebe function zf ′(z) = z

(1−z)2 is actually not

universally starlike.

1.6. Examples. In this section we present two general examples for universally
starlike and convex functions.

1.6.1. Polylogarithms. J. Lewis [10], with an extremely involved proof, showed that
the polylogarithmic functions

Liα(z) :=

∞∑

k=1

zk

kα
α ≥ 0,

are convex univalent in D. Since, for α > 0,

(1.5) gα(z) :=
Liα(z)

z
=

1

Γ(α)

∫ 1

0

(log(1/t))α−1dt

1 − tz
,

we see that gα ∈ T for α > 0 and hence Liα belong to Ru
1 (clearly both statements

hold for α = 0 as well). Therefore the question arises whether these functions are
also universally convex. We have the following result.

Theorem 1.7. The functions Liα are universally starlike for α = 0 and α ≥ 1.
They are universally convex for α = 0, α = 1 and α ≥ 2. For α ∈ (0, 1) they are
not universally convex.
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For a ∈ (0, 1) we have

Gα(z) := 1 +
z

2

Li′′α(z)

Li′α(z)
= 1 +

1

2α
z +

(
1

3α−1
− 1

22α−1

)
z2 + . . . .

It is easy to check that, the third coefficient in this expansion is larger than the
second one. Therefore Gα cannot be in T , and Theorem 1.1 then implies that
Liα cannot be universally convex for those α. However, the following extension of
Theorem 1.7 seems possible.

Conjecture 1.1. The functions Liα are universally starlike for α ≥ 0 and univer-
sally convex for α ≥ 1.

If this is true, then Liα maps Λ univalently onto a domain starlike with respect to
the origin for every α ≥ 0, which would nicely add to Lewis’ previously mentioned
result.

1.6.2. Hypergeometric functions. The hypergeometric functions 2F1(a, b, c, z) have
been studied in the context of convex, starlike and prestarlike functions in the unit
disc on many occasions, see for instance Lewis [11] and Ruscheweyh [15]. Since
these functions are in H(Λ) we again can ask which of them, after re-normalization,
are also universally starlike or convex. Our answers here are not complete (which
cannot be expected, anyway).

Theorem 1.8. Let c > 0 and 0 ≤ a ≤ min{1, c}, 0 ≤ b ≤ c. Then the function
f(z) := z 2F1(a, b, c, z) is universally starlike.

Using the first invariance property stated in Theorem 1.4 together with Euler’s
transformation formula for hypergeometric functions (cf. [1, 15.3.4]) Theorem 1.8
implies

z(1 − z)a−1
2F1(a, b, c, z) ∈ Ru

1/2, a, b, c > 0, a ≤ min{1, c}.

Theorem 1.9. Let a, b, c 6= 0 and −1 ≤ a ≤ min{1, c}, −1 ≤ b ≤ c. Then the
function f(z) = c

ab (2F1(a, b, c, z)− 1) is universally convex.

From the large number of special cases we just mention the following:

√
z arcsin

√
z = z2F1(

1

2
,
1

2
,
3

2
, z),

z

(1 − z)a
= z2F1(a, 1, 1, z), 0 < a ≤ 1,

are universally starlike, while, for instance,

ua(z) :=
1

a
(1 − (1 − z)a) =

1

a
(1 − 2F1(−a, 1, 1, z)), 0 6= a2 ≤ 1,

(1.6) log
1

1 − z
= lim

a→0
ua(z),

are universally convex. It might be interesting to note that the inverse w = F (z)
of the Koebe function z = 4w(1 + w)−2, namely

2

z
(1 −

√
1 − z) − 1 = 2F1(

1

2
, 1, 2, z)− 1 =

z

4
+ . . . ,

is also universally convex (up to the scale factor 1
4 ).
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One should remark that there are a number of theorems by various authors (for
instance, Van Vleck [21], Hurwitz [8], Schafheitlin [17], Runckel [14] and Küstner [9])
dealing with the non-vanishing of hypergeometric functions in Λ. Our results above
concern univalence in Λ, which, at least for the derivatives, imply non-vanishing
statements as well, and the corresponding parameter sets {a, b, c} have large inter-
sections. We refer to Küstner [9] for more about this.

1.7. A conjecture. There are many explicit examples of completely monotone
sequences, and it is an interesting question whether their corresponding power
series (multiplied by z) belong to Ru

α for some α < 1. A somewhat curious example
comes from a famous problem due to Ramanujan. For n = 0, 1, 2, . . . define the
numbers θn by

en

2
=

n−1∑

k=0

nk

k!
+

nn

n!
θn.

Ramanujan’s question was whether θn ∈ [1/3, 1/2] holds for all n. This has been
proved on several occasions (see Berndt [4] for details). Only recently, Adell &
Jodrá [2] showed that the sequence θn is in fact completely monotone, with θn → 1

3
for n → ∞. Numerical as well as graphical experiments, using a new explicit
representation for the θn given in [2] seem to indicate that the function

σ(z) :=
1

θ1 − 1
3

∞∑

n=1

(θn − 1

3
)zn

is indeed universally convex. This is an open problem. One can show, however,
that σ cannot be universally prestarlike of any order smaller than −.05.

1.8. A useful theorem. The definition of universally prestarlike functions deals
generally with the question when the quotient of two functions belongs to T . In
this context the following Theorem proves to be useful. It is also interesting by
itself.

Theorem 1.10. Let f, g ∈ T be represented by

f(z) =

∫ 1

0

ϕ(t) dt

1 − tz
, g(z) =

∫ 1

0

ψ(t) dt

1 − tz

for non-negative Borel functions ϕ and ψ on (0, 1). If ϕ(t)ψ(s) ≥ ϕ(s)ψ(t) holds
for 0 < s ≤ t < 1, then f(z)/g(z) ∈ T .

2. Proof of Theorem 1.1 and its Corollaries

2.1. A characterization of members of T . Later we will need the following
independent characterization of the functions belonging to the family T , introduced
in Section 1.1.

Lemma 2.1. Let F ∈ H(Λ). Then F ∈ T , i.e.

F (z) =

∫ 1

0

dµ(t)

1 − tz

for some probability measure µ on [0, 1], if and only if the following conditions are
fulfilled:

(i) F (0) = 1;
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(ii) F (x) ∈ R for x ∈ (−∞, 1);

(iii) ImF (z) ≥ 0 for Im z > 0;

(iv) limn→∞ F (zn)/zn = 0 for some sequence zn ∈ C with Im zn → +∞, and
Im zn ≥ δ Re zn for some positive constant δ;

(v) lim supx→∞ F (−x) ≥ 0.

The measures µ and the functions F are in one-to-one correspondence.

This lemma is not really new: bits and pieces of it are available in the literature,
see for instance the monographs [3], [5], [20]. Since we need it in exactly this form
we prefer to sketch the less common parts of it.
Proof. The ‘only if’ part of the Lemma is more or less obvious: note that (iv)
and (v) follow (almost) immediately from

(2.1) lim
r→+∞

F (rζ) = lim
r→+∞

∫ 1

0

dµ(t)

1 − trζ
= µ({0}) ∈ [0, 1], ζ ∈ C \ [0,∞],

using Lebesgue’s dominated convergence theorem.
To prove the other direction we first note that (ii), (iii) imply that F is a Pick

function in H(Λ) which is real on (−∞, 1), i.e. a member of the class P (−∞, 1) in
the notation of [5, II, Lemma 2]. Hence, it has a representation ([5, II, Theorem
1], [20, p.23])

F (z) = a+ bz +

∫ ∞

1

1 + uz

u− z
dσ(u), z ∈ Λ,

where a ∈ R, b ≥ 0, and σ is a finite non-negative Borel measure on [1,∞).
Using Lebesgue’s dominated convergence theorem, in combination with (iv), for a
sequence with Im zn ≥ δRe zn and Im zn → +∞ we immediately deduce: b = 0,
and condition (i) yields

a = 1 −
∫ ∞

1

dσ(u)

u
.

Therefore, under the assumptions (i) through (iv), we obtain the representation

F (z) = 1 +

∫ ∞

1

(
1 + uz

u− z
− 1

u

)
dσ(u) = 1 + z

∫ ∞

1

1 + u2

u(u− z)
dσ(u).

From this representation we immediately deduce that F (x) is non-decreasing in
x < 1, so that c := limx→−∞ F (x) exists (and is in [0,1] by (v)). By Lebesgue’s
monotone convergence theorem, we have

c = 1 − lim
n→+∞

∫ ∞

1

xn(1 + u2)

u(u+ xn)
dσ(u) = 1 −

∫ ∞

1

1 + u2

u
dσ(u).

Thus, the positive measure λ on [1,∞] defined by dλ(u) = (u+ 1/u)dσ(u) has the
total mass 1 − c ∈ [0, 1] and we have

F (z) = 1 + z

∫ ∞

1

dλ(u)

u− z
.

Using the substitution t = 1
u we obtain

F (z) = 1 + z

∫ 1

0

t dµ∗(t)

1 − tz
,
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where dµ∗(t) = dλ(u) on t ∈ [0, 1]. Clearly, the total masses of µ∗ and λ are equal,
namely 1 − c. We now define dµ(t) := dµ∗(t) + c dδ0(t), where δ0 stands for the
Dirac measure at 0. Then µ is a probality measure on [0, 1], and we have

F (z) = 1 + z

∫ 1

0

t dµ(t)

1 − tz
=

∫ 1

0

dµ(t)

1 − tz
,

the assertion. The uniqueness of the measure µ for the given F follows from the
fact that the Hausdorff moment sequences are determinate, see [20, p.23] . �

2.2. Two basic lemmas. The essential link between universally prestarlike func-
tions and Pick functions, as described in the Lemma 2.1, is contained in the follow-
ing elementary lemmas.

Lemma 2.2. Let F ∈ H(Λ) be such that

(2.2) Re

{
1

1 − z
F

(
γz

1 − z

)}
≥ 0, |z| < 1, |γ + 1| < 1.

Then F is a Pick function of class P (−∞, 1), i.e. F fulfills the conditions (ii),(iii)
of Lemma 2.1.

Proof. Let w satisfy Imw > 0. Then, for γ := w
iα with α < 0 and |α| large

enough we have |γ + 1| < 1. Clearly, condition (2.2) holds also for |z| = 1, z 6= 1,
so that we can choose z on that circle such that

1

1 − z
=

1

2
+ iα,

z

1 − z
= −1

2
+ iα.

Hence, after division by α, we get

Re

{(
1

2α
+ i

)
F

(
w

iα

(
−1

2
+ iα

))}
≤ 0,

or, by letting α → −∞, that ImF (w) ≥ 0. Similarly we find ImF (w) ≤ 0 for
Imw < 0, and, for continuity reasons, F (x) ∈ R for x ∈ (−∞, 1). �

Lemma 2.3. Let β ≥ 0 and f ∈ H(Λ). Then, for each choice of ρ ∈ [0, 1] and
γ ∈ C with |γ + ρ| ≤ 1, the following relation holds (recall the notation from
Definition 1.1)

(2.3) (Dβfγ,ρ)(z) = (1 − ρz)1−β(Dβf)γ,ρ(z).

In particular we have

(2.4)
(Dβ+1fγ,ρ)(z)

(Dβfγ,ρ)(z)
=

1

1 − ρz

(Dβ+1f)γ,ρ(z)

(Dβf)γ,ρ(z)

.
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Proof. Let w(z) := γz
1−ρz and Jβ(z) := z

(1−z)β . We apply the following transfor-

mations:

γ (Dβfγ,ρ)(z) = Jβ(z) ∗z f(w(z))

= Jβ(z) ∗z

{
1

1 − ζw(z)
∗ζ f(ζ)

}∣∣∣∣
ζ=1

= Jβ(z) ∗z

((
γζ

γζ + ρ

1

1 − (γζ + ρ)z
+

ρ

γζ + ρ

)
∗ζ f(ζ)

)∣∣∣∣
ζ=1

=
γζz

(1 − z(γζ + ρ))β
∗ζ f(ζ)

∣∣∣∣
ζ=1

= (1 − ρz)1−β (Jβ(w(z)ζ) ∗ζ f(ζ))
∣∣
ζ=1

= γ (1 − ρz)1−β(Dβf)γ,ρ(z),

where a symbol ∗σ indicates convolution w.r.t. the variable σ. Taking quotients of
the cases β + 1 and β of (2.3) gives (2.4). �

2.3. Proof of Theorem 1.1. Let β = 2 − 2α so that β ≥ 0, and let f ∈ H1(Λ).
First assume that f ∈ Ru

α. By definition this is equivalent to the statement that
the left hand side of (2.4) is in P for all ρ ∈ [0, 1], |γ + ρ| ≤ 1.

Now let

(2.5) F (w) :=
(Dβ+1f)(w)

(Dβf)(w)
.

Clearly F ∈ H(Λ), and by Lemma 2.3 we find

(2.6) Re
1

1 − ρz
F

(
γz

1 − ρz

)
≥ 1

2
, z ∈ D,

with ρ, γ as before.
Lemma 2.2 then shows that F satisfies the conditions (i)-(iii) of Lemma 2.1.

To prove the “only if” part of Theorem 1.1 we are left with the verification of
conditions (iv) and (v).

From (2.6) with γ = −1 and ρ = 1 we have the subordination

1

1 − z
F

( −z
1 − z

)
≺ 1

1 − z
,

which implies
1

1 + z
≤ 1

1 − z
F

( −z
1 − z

)
, z ∈ (0, 1),

and therefore (v) by letting z → 1 − 0.

To prove (iv) we set again ρ = 1, z = r ∈ (0, 1), and γ = γ(r) := r−1+i
√

1 − r2,
so that |γ(r) + 1| = 1. By the same subordination argument as above we obtain
with

w(r) =
γ(r)r

1 − r
= −1 + i

√
1 + r

1 − r
the inequality ∣∣∣∣

1

1 − r
F (w(r))

∣∣∣∣ ≤
1

1 − r
.

Since Rew(r) = −1, Imw(r) → ∞ and F (w(r))/w(r) → 0 for r → 1 − 0 condition
(iv) is also established.
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If, on the other hand, the function F (w), as given in (2.5), belongs to T then,
by Lemma 2.3, we have

(Dβ+1fγ,ρ)(z)

(Dβfγ,ρ)(z)
=

∫ 1

0

dµ(t)

(1 − ρz)(1 − w(z)t)
=

∫ 1

0

dµ(t)

1 − (ρ+ γt)z

for the admissible parameters ρ, γ and the probability measure µ corresponding to
F ∈ T . But since |ρ+ γt| ≤ |(ρ + γ)t| + (1 − t)|ρ| ≤ 1 for t ∈ [0, 1] it is clear that
the function on the right is indeed in P , which we had to establish. �

2.4. Proof of Corollary 1.1. We first remark that

D3−2αf =
1 − 2α

2 − 2α
(D2−2αf) +

1

2 − 2α
z(D2−2αf)′,

so that (1.4) implies

z(D2−2αf)′

D2−2αf
− 1

z
= (2 − 2α)

∫ 1

0

t

1 − tz
dµ(t),

and therefore, after some calculation, the assertion. �

2.5. Proof of Corollary 1.2. The inclusion property in Lemma 1.1 together with
Definition 1.2 imply Ru

α ⊂ Ru
β for α ≤ β ≤ 1. The assertion follows now from

Theorem 1.1. �

2.6. Proof of Corollary 1.3. Using a discrete measure in Corollary 1.1 the as-
sertion follows from Corollary 1.2, applied to the corresponding f ∈ Ru

1−σ/2. �

3. Proof of Theorems 1.2 – 1.4

3.1. Proof of Theorem 1.2. We only need to deal with the case α ≤ 1
2 . By

construction and a limiting argument, f maps the upper half-plane univalently
onto a domain starlike w.r.t. the origin, and is also located in the upper half-plane
(note that f is typically real). The image of the lower half-plane is obtained by
reflection at the real axis. Hence f is univalent in Λ, and the image is starlike w.r.t.
the origin. �

3.2. Proof of Theorem 1.3. Assume f ∈ Ru
1/2 is rational. Since f/z ∈ T , we

must have

f(z) =

n∑

k=1

µkz

1 − tkz
, tk ∈ [0, 1], µk > 0,

n∑

k=1

µk = 1.

For a fixed k, which we may choose as k = 1, we then have

f(z) =
µ1z

1 − t1z
+H(z),

where H is rational and analytic in z = 1/t1. Then a simple calculation yields

(3.1) F (z) :=
zf ′(z)

f(z)
=

1

1 − t1z
+H∗(z),

where H∗ is also analytic in z = 1/t1. But, by Theorem 1.1, F is also in T and is
clearly also a rational function. So it must also be of the form

m∑

k=1

λk

1 − τkz
, τk ∈ [0, 1], λk > 0,

m∑

k=1

λk = 1.
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If such a function has the form (3.1), then one of the τk must equal t1, and the
corresponding λk must be 1. But then we must have F (z) = zf ′(z)/f(z) = 1

1−t1z .

Integration shows that f(z) = z
1−t1z . �

3.3. Proof of Theorem 1.4. Let F (z) := −f(z/(z − 1)). We have to show that

Fγ,ρ(z) =
−1

γ
f

( −γz
1 − (γ + ρ)z

)
= f−γ,γ+ρ(z) ∈ Rα, |γ + ρ| ≤ 1.

This is true for γ + ρ = 0. Otherwise we set x := (γ + ρ)/|γ + ρ| and find

1

x
f−γ,γ+ρ(xz) = f−γx,|γ+ρ|(z),

which belongs to Rα since ||γ + ρ| − γx| = ||γ + ρ|x̄− γ| = |ρ| ≤ 1 and |γ + ρ| ≥ 0.
The assertion about f(tz)/t can be established in a similar fashion. �

4. Proof of Theorems 1.5 and 1.6

4.1. Proof of Theorem 1.5. Let f be universally starlike. Following the proof of
Theorem 1.1 with the required changes (choose β = 1) it follows immediately that

Re

{
1

1 − ρz

w(z)f ′(w(z))

f(w(z))

}
> 0

for z ∈ D, where w(z), γ, ρ are as before. This, together with Lemma 2.2, implies
that

F (w) :=
wf ′(w)

f(w)

satisfies the conditions (i)-(iii) of Lemma 2.1, and the same argument as in the
proof of Theorem 1.1 yields the validity of (iv) for F as well. To prove (v) let

c := lim
x→∞,x∈R

F (−x).

Since
1

1 − z
F

( −z
1 − z

)
≺ 1 + z

1 − z

and consequently

1 − z

1 + z
≤ 1

1 − z
F

( −z
1 − z

)
, z ∈ (0, 1),

so that c ≥ 0 by letting z → 1 − 0. Thus F ∈ T by Lemma 2.1, and Theorem 1.1
shows that f is universally prestarlike of order 1

2 . �

4.2. A general property of convex univalent maps. The following lemma is
well-known. Discs and half-planes are called circular domains.

Lemma 4.1. Let Ω′ be a circular subdomain of a circular domain Ω ⊂ C. If
f ∈ H(Ω) maps Ω conformally onto a convex domain then f(Ω′) is also convex.

The proof is elementary. See Pommerenke [13], Heins [7] and Sheil-Small [19]
for even more general statements which could be used to extend Theorem 1.6.

4.3. Proof of Theorem 1.6. If f is universally convex, Lemma 4.1 shows that f
maps every circular domain in Λ onto a convex domain. This holds, in particular, for
the domains Ωγ,ρ with |γ+ρ| ≤ 1 and the corresponding functions fγ,ρ are therefore
members of R0. This implies f ∈ Ru

0 . The other direction is immediate. �
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5. Proof of Theorem 1.7 and 1.10

5.1. Our proof of Theorem 1.7 uses the following lemma, which in turn is based
on Theorem 1.10.

Lemma 5.1. Let gα be as in (1.5). Then we have

(5.1)
gα(z)

gβ(z)
∈ T , 0 ≤ α ≤ β.

5.2. Proof of Theorem 1.10. Let h(z) = f(z)/g(z), z ∈ Λ. We check conditions
(i)-(v) in Lemma 2.1 for h. Conditions (i) and (ii) clearly hold. For (iv), we look at
the quantity

h(iy)

y
=

f(iy)

yg(iy)

for 0 < y → +∞. Obviously, the numerator tends to zero, and

lim
y→+∞

iy g(iy) =

∫ 1

0

iyψ(t)dt

1 − ity
→ −

∫ 1

0

ψ(t)dt

t
,

does not vanish (and might be ∞). Therefore, condition (iv) has been confirmed.

We next proceed to (iii). Note first that h(z) = h(z) by (ii). Since

2i Imh(z) = h(z) − h(z) =
f(z)g(z) − f(z)g(z)

|g(z)|2 ,

we have only to look at the numerator of the last term. Since

f(z)g(z) =

∫ 1

0

ϕ(s)ds

1 − sz

∫ 1

0

ψ(t)dt

1− tz

=

∫∫
ϕ(s)ψ(t)

(1 − sz)(1 − tz)
dsdt

=

∫∫

s≤t

+

∫∫

t≤s

=

∫∫

s≤t

(
ϕ(s)ψ(t)

(1 − sz)(1 − tz)
+

ϕ(t)ψ(s)

(1 − tz)(1 − sz)

)
dsdt,

we obtain

f(z)g(z̄) − f(z̄)g(z) =

∫∫

{0<s≤t<1}

(t− s)(ϕ(t)ψ(s) − ϕ(s)ψ(t))(z − z̄)

|1 − sz|2|1 − tz|2 dsdt.

By assumptions, (iii) follows. (v) is immediate since h(x) = f(x)/g(x) > 0 for
x ∈ (−∞, 1), �

5.3. Proof of Lemma 5.1. Lemma 5.1 follows immediately from Theorem 1.10,
given the expressions for gα and gβ in (1.5). �
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5.4. Proof of Theorem 1.7. The starlike case is equivalent to

zLi′α(z)

Liα(z)
=

Liα−1(z)

Liα(z)
=
gα−1(z)

gα(z)
∈ T

which, for α ≥ 1, is an immediate consequence of Lemma 5.1. The case α = 0 is
obvious.

In the convex case we can write

1 +
z

2

Li′′α(z)

Li′α(z)
=

1

2

(
1 +

Liα−2(z)

Liα−1(z)

)
=

1

2

(
1 +

gα−2(z)

gα−1(z)

)
.

By Lemma 5.1 we have gα−2/gα−1 ∈ T for α ≥ 2, and the assertion follows from
the fact that 1 ∈ T and T is a convex family. The case α = 1 comes from (1.6). �

6. Proof of Theorems 1.8 and 1.9

We begin with the following result by Küstner [9, Thm. 1.5].

Lemma 6.1. Let −1 < a < c and 0 < b < c. Then

2F1(a+ 1, b, c, z)

2F1(a, b, c, z)
∈ T .

6.1. Proof of Theorem 1.8. For the function f we find

z
f ′(z)

f(z)
= 1 +

z 2F
′
1(a, b, c, z)

2F1(a, b, c, z)

= 1 +
ab

c

z 2F1(a+ 1, b+ 1, c+ 1, z)

2F1(a, b, c, z)

= 1 − a+ a
2F1(a+ 1, b, c, z)

2F1(a, b, c, z)
∈ T .

Here we made use of the identity

b

c
z 2F1(a+ 1, b+ 1, c+ 1, z) = 2F1(a+ 1, b, c, z)− 2F1(a, b, c, z),

which is easily verified, and of Lemma 6.1, combined with the convexity of T . �

6.2. Proof of Theorem 1.9. With the same reasoning we obtain for the function
f of this theorem that

1 +
z

2

f ′′(z)

f ′(z)
= 1 +

z

2

(a+ 1)(b+ 1)

(c+ 1)
2F1(a+ 2, b+ 2, c+ 2, z)

2F1(a+ 1, b+ 1, c+ 1, z)

= 1 − a+ 1

2
+
a+ 1

2
2F1(a+ 2, b+ 1, c+ 1, z)

2F1(a+ 1, b+ 1, c+ 1, z)
∈ T .

�
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