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1. Definition and background of uniform perfectness

The classical analysis had mainly treated smooth objects. Recently, however, it has
been recognized that non-smooth ones such as self-similar sets could have relatively sim-
ple structures, and therefore, they are also natural objects in Mathematics. For those sets
which have a sort of self-similarity, one has been able to develop deep analysis by using
their combinatorial structures in recent years. This methodology is quite powerful, how-
ever, it is hard to develop a uni�ed approach because the method strongly depends on the
combinatorial structure. Therefore, if one could invent a mathematical quantity which is
applicable to general compact sets, is easy to treat, reects well a speci�c property of the
�gures and is informative, then it would play an important role in the progress of this
�eld.
For a connected compact set containing at least two points, which is usually called a

continuum, the linear projection of the set into a suitable lower dimensional space can be
used to obtain useful information. On the other hand, an isolated point is quite simple to
handle, and hence, can be excluded from our considerations at the moment. A non-empty
closed set without any isolated point is called perfect in the theory of general topology.
Hence, one may think that a perfect set in the Euclidean space containing no continuum,
which is called a (generalized) Cantor set, is most diÆcult to treat in some sense.
In this article, we give an exposition for the notion of uniform perfectness, which is

a quanti�ed version of perfectness, and, in spite of the apparent simplicity of its de�ni-
tion, we will see that the uniform perfectness yields important information on the metric
structure of the set even in the case when it is totally disconnected. As we will see in
Section 5, this property is indeed enjoyed by most of compact sets which have certain
self-similarity. In the sequel, in order to collect various interesting aspects as many as
possible, we restrict ourselves to the case of compact sets in the complex plane or in the
Riemann sphere (2-sphere). For a general case, we only refer to the present state of the
study in x 6.1. To avoid the trivial case, in what follows, we consider only compact sets
containing at least two points unless otherwise stated.

1.1. De�nition. A compact set E in the Riemann sphere bC = C [ f1g is said to be
uniformly perfect if there exists a constant c > 0 with the following property: For any �nite
point a 2 E and for any 0 < r < d(E); there is a point b 2 E with cr � jb� aj � r: Here,
d(E) denotes the Euclidean diameter of the set E and we conventionally set d(E) = +1
whenever 1 2 E: Then, since we can take a sequence in E n fag tending to a; we see
that E is perfect. The above de�nition says that if we look at E around a through a
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microscope with any magni�cation we can still �nd another point in E within a de�nite
interval of the radius. In this sense, the word \uniform" has been used. As one can easily
see from the de�nition, this concept is invariant under similarities of the plane. In fact,
(if we allow the change of the above constant c) we will �nd that it is invariant under

more general transformations on bC including M�obius maps (see x 2.1). With this in mind,
the reader may feel it strange that the point at in�nity plays a special role in the above
de�nition of the uniform perfectness. Through more natural formulations of the uniform
perfectness below, however, the universality of this concept will be clari�ed.

1.2. Historical remarks. The uniform perfectness is quite simple concerning the de�ni-
tion, however, as far as the author knows, this terminology �rst appeared in Pommerenke
[61], 1979, although the same condition was stated in Beardon-Pommerenke [8], 1978,
earlier. Note that, at the almost same time, the essentially same concept was given by
Tukia-V�ais�al�a [81] under the name \homogeneously dense". It might be a surprising fact
that such a simple notion had not been systematically studied before then. As a fact,
once the usefulness of this notion has been recognized, many authors began to investigate
the properties more deeply and to apply it. In these two decades, various connections
between the uniform perfectness and other �elds have emerged. The recent increase of
interest in the fractal geometry has produced the demand for tools to measure mathe-
matical objects which are not necessarily smooth. The uniform perfectness could provide
an e�ective means as such a tool.

1.3. Personal background. The author would like to note here his personal motivation
to choose the uniform perfectness as one of the research subjects in these years. Originally,
in order to investigate the Bers embedding of Teichm�uller spaces, he had been struggling
to understand what the Schwarzian derivative was in his way. For a certain aim, he
considered a condition for the hyperbolic sup-norm of the Schwarzian derivative of analytic
universal covering map of a given domain to be �nite, and then, arrived at the notion
of uniform perfectness around 1994. He had obtained a several equivalent properties to
the uniform perfectness, however, he found later that Pommerenke had done almost all of
them and even much more in the series of his work. Since the author had also obtained
new or more re�ned results in this direction, he decided to publish it as a survey [72].
The author would like to express his sincere thanks to the University of Helsinki where

he was staying while doing this work and to all of the sta�s there, among them, to Matti
Vuorinen for useful suggestions.

2. Geometric characterizations

{ rear view of uniform perfectness {

Denote by 
 the complement of a compact set E in bC : We will give characterizations
of the uniform perfectness of E in terms of the geometry of the open set 
: Therefore, we
will mainly be concerned with the complement in this section. Note that the boundary
@
 is taken in the Riemann sphere. So, the relative boundary @
 n f1g of 
 in C will
be distinguished by the di�erent notation @b
 here.
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2.1. Characterizations in terms of moduli of annuli. In this article, a doubly con-
nected domain will be called an annulus, and an annulus of the form r1 < jz�aj < r2 will
be called a round annulus. An arbitrary annulus A is known to be conformally equivalent
to a round annulus. Then the quantity log(r2=r1) is a conformal invariant determined by
A only, called the modulus of A; and denoted by modA: An annulus A in 
 is said to
separate the boundary @
 if each connected component of bC n A intersects @
: This is

equivalent to saying that A separates E = bC n 
: Then we have the following.

Theorem 2.1 ([62], [72]). The uniform perfectness of E = bC n
 is equivalent to each of

the following conditions:

(i) The modulus of an annulus in 
 separating @
 is bounded above;

(ii) The modulus of a round annulus in 
 separating @
 is bounded above.

From the very de�nition, it is easy to see the equivalence of the uniform perfectness to
condition (ii). We denote by M(
) and MÆ(
) the suprema of annuli and round annuli
in 
 separating @
; respectively. We conventionally de�ne these values to be 0 if such an
annulus does not exist. (Similarly, we de�ne the in�mum of the empty set to be +1 in
the sequel.) By the standard argument using Teichm�uller's extremal ring domains and
an modulus estimate for those, we obtain the inequality MÆ(
) �M(
) � 2MÆ(
) +C;
where C is an absolute constant (see [31] or [72]). Thus, the equivalence of (i) and (ii)
follows.
When 
 is connected, namely, it is a domain, each component of bC n 
 is simply

connected. Hence, by the above characterizations, we observe that the uniform perfectness

of bC n
 is equivalent to that of @
: As is well known, K�1modA � mod f(A) � KmodA
holds for a K-quasiconformal mapping f (see, for instance, [1]), in particular, in view of
condition (i), it turns out that the uniform perfectness is preserved by quasiconformal
homeomorphisms.
Note also that, in the �rst de�nition of uniform perfectness and condition (ii), the point

at in�nity plays a special role, while it does not in condition (i).

2.2. Hyperbolic metric and Fuchsian groups. In this subsection, we will assume
that the set E contains at least three points. Then, the Poincar�e-Koebe uniformization
theorem tells us that each connected component 
0 of 
 has universal covering surface
conformally equivalent to the unit disk D = fz 2 C ; jzj < 1g: In this way, we know
of the existence of analytic universal covering map p = p
0 : D ! 
0 of 
0 from D :
Let � = �
0 be the covering transformation group of this covering. Then � is a Fuchsian
group acting freely on D : Since the hyperbolic (or the Poincar�e) metric �D = jdzj=(1�jzj2)
is invariant under the pull-back by elements of �; the complete Riemannian metric �
0
can be de�ned on 
0 by the relation �D = p��
0 ; and indeed, this is independent of the
particular choice of covering map p: We can de�ne the metric �
 on 
 component-wise
in this way and call it the hyperbolic metric of 
: In this sense, an open set in bC whose
boundary contains at least three points is called hyperbolic. (Caution! The above metric
has Gaussian curvature �4; although many authors prefer to use 2�
 of curvature �1
instead. Therefore, the reader must be careful when comparing other papers.)
The hyperbolic length of a piecewise smooth curve  in 
 is de�ned by `
() =R


�
(z)jdzj: A closed curve in 
 is said to be nontrivial if it is not homotopic to a
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point in 
: We denote by L(
) in the following the in�mum inf `
() of the hyperbolic
lengths of all nontrivial, piecewise smooth, closed curves in 
: This quantity is 0 if 
 has
a puncture, and otherwise, equals the in�mum of the hyperbolic lengths of all (simple)
closed geodesics in 
: The hyperbolic distance d
(z; w) between two points z; w 2 
 is
de�ned as the in�mum of the hyperbolic lengths of piecewise smooth curves joining z and
w in 
: Note that the distance is +1 if z and w belong to di�erent components of 
:
Let D
(z0; r) denote the metric ball fz 2 
; d
(z0; z) < rg centered at z0 2 
 with radius
r: The supremum of those radii r > 0 for which D
(z0; r) is homeomorphic to the usual
disk will be called the injectivity radius of 
 at z0; and denoted by �
(z0): The in�mum
of �
(z0) taken over all z0 2 
 will be called the injectivity radius of 
 and denoted by
I(
): Then, a simple observation gives us the relation L(
) = 2I(
): We end this subsec-
tion with the remark that the terminology and notation here can be applied to general
hyperbolic Riemann surfaces.

2.3. Characterization in terms of hyperbolic geometry. Using the terminology
de�ned in the previous subsection, the uniform perfectness can be characterized as follows.

Theorem 2.2 ([61], [72]). Let 
 be a hyperbolic open set in bC : Then the uniform per-

fectness of the set bC n 
 is equivalent to each of the following:

(i) The in�mum L(
) of hyperbolic lengths of nontrivial closed curves is positive;

(ii) The injectivity radius I(
) of 
 is positive;

(iii) infftr2g; g 2 �
0 n fidg; 
0is a component of 
g > 4:

Here, tr2g denotes the squared trace of an element of SL(2; C ) which represents the M�obius

transformation g:

In fact, by a simple computation, we can con�rm that the hyperbolic length lg of the
closed geodesic which is represented by a primitive element g in �
0 is given by the
formula jtrgj = 2 cosh lg: (Note that tr

2g � 0 whenever g 2 � < Aut (D ):) Therefore, it is
easy to see the three conditions above are equivalent. The remainder is the equivalence
of the uniform perfectness of the complement to one of the three conditions. This can
be seen from the following comparison theorem between the hyperbolic length `
[] =
inff`
(

0); 0 2 []g and the extremal length E
[] (see, for instance, [1] for de�nition) of
the free homotopy class [] of a closed curve  in 
:

Lemma 2.3 ([72]).

2

�
`
[] � E
[] �

`
[]

arctan(1= sinh `
[])
�

2

�
`
[]e

`
[]:

We remark that a slightly weaker form was obtained earlier by Maskit [47].
This estimate can be shown by the standard argument using the collar lemma. Roughly

speaking, if there is a closed geodesic of hyperbolic length small enough, then we can take
an annulus of suÆciently large modulus as a tubular neighborhood, and vice versa (the
converse part is easy to see). The collar lemma describes the above fact quantitatively
(see [27], [11]).
Indeed, for []; we can take the annulus A in 
 called the characteristic ring domain

whose core curve is homotopic to  to express the extremal length concretely by E
[] =
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2�=modA (see Jenkins-Suita [36]. See also [20]). In particular, the inequality L(
) �
�2=M(
) � L(
)eL(
) follows. It is now immediate to derive the required equivalence.

2.4. Characterizations in terms of metrics. In the previous subsection, we saw that
the uniform perfectness of the boundary can be characterized in terms of the hyperbolic
geometry. Here, we will see that it can also be characterized in terms of the boundary
behavior of the hyperbolic density �
(z): Let us �rst consider the Euclidean distance
Æ
(z) = inffjz � aj; a 2 @
g from z 2 
 to the boundary @
: Then, the principle of
domain extension for the hyperbolic density (see [56]) yields the inequality �
 � Æ
:
The continuous metric jdzj=Æ
(z) is sometimes called the quasihyperbolic metric of 
:
The quasihyperbolic metric is widely used for general domains in the case of non-smooth
boundary and even in the higher dimensional case when the domain might not have
the hyperbolic metric because of its easy access to computations or estimates. See, for
instance, [22], [21], [66], [40], [25]. Also in [38] there is a good survey on the quasihyperbolic
metric. By virtue of the Koebe one-quarter theorem, we obtain the reverse inequality
1=4Æ
 � �
 in the case when 
 is simply connected, nevertheless the quasihyperbolic
metric is not necessarily comparable with the hyperbolic metric for general domains. In
fact, the comparability gives a characterization of the uniform perfectness of the boundary.
Note that we should be careful with the treatment of the point at in�nity because the
distance function Æ
 was de�ned by Euclidean distance. To this end, we introduce the
notation 
r = fz 2 
; Æ
(z) < rg for 0 < r � +1:

Theorem 2.4 (Beardon-Pommerenke [8]). Set d = d(@
) for a hyperbolic open set 
 inbC : The complement bC n
 is uniformly perfect if and only if there exists a constant c > 0
such that the inequality c=Æ
 � �
 holds in 
d:

Actually, this theorem seems to be a starting point of the notion of uniform perfectness.
The reader may also be referred to [61], [72] and [70]. For the proof, it is essential to make
use of the classical Landau theorem, which can be stated as �Cnf0;1g(z) � 1=jzj(2j log jzjj+
C) holds for some constant C > 0 in terms of the hyperbolic density. The best constant
can be found in [30] and [35]. For further estimates and the relations with other geometric
quantities, see also [86] or [72].

2.5. Schwarzian derivative and universal cover. The pre-Schwarzian and Schwarzian
derivatives of a non-constant meromorphic function f is de�ned by

Tf =
f 00

f 0
= (log f 0)0 and Sf =

�
f 00

f 0

�0
�

1

2

�
f 00

f 0

�2

= (Tf)
0 �

1

2
(Tf)

2;

respectively. For a meromorphic function ' in the hyperbolic open set 
; we set k'kj;
 =
supz2
 �
(z)

�jj'(z)j: In the case when j = 2; this coincides with the hyperbolic sup-
norm (see x 4.2) of a holomorphic quadratic di�erential and plays an important role in
the theory of Teichm�uller spaces (see [41] or [20]).

Theorem 2.5 (Pommerenke [61], [62]). Let 
 be a hyperbolic open set. Then the com-

plement bC n 
 is uniformly perfect if and only if there exists a constant C such that

kSpk2;D � C holds for any component 
0 of 
 and for any analytic universal covering

map p : D ! 
0: If 
 � C in addition, this is equivalent to that there exists a constant

C 0 such that kTpk1;D � C 0 holds for all such p as above.

5



The well-known Koebe area theorem in univalent function theory implies the inequal-
ities jTf(0)j � 4 and jSf(0)j � 6 for a univalent function f : D ! C (see [41]). Let
r0 = tanh(I(
)) > 0: We now assume that 1 =2 
 and �x z0 2 D : Then the function
f(z) = p((r0z + z0)=(1 + z0r0z)) is univalent in D ; and thus, satis�es the above inequal-
ities. From this observation, we can deduce the necessity of the above conditions. The
suÆciency can also be derived from the same technique as above and from the following
two results: kSfk2;D � 2 implies the univalence of f (Nehari [55]) and kTfk1;D � 1 implies

the univalence of f (Becker [9]). For related results, see also [53], [44], [72] and [86].
It is well known that kSfk2;D � 6 and kTfk1;D � 6 hold for a univalent function

f : D ! C and it is shown by Beardon-Gehring [7] that kSfk2;
 � 12 holds for a univalent

function f : 
! bC : However, the counterpart of the latter result for the pre-Schwarzian
derivative is no longer valid, and moreover, the validity can be used for a characterization
of the uniform perfectness.

Theorem 2.6 (Osgood [60]). Let 
 � C be a hyperbolic open set. Then, the complementbC n
 is uniformly perfect if and only if there exists a constant C > 0 such that kTfk1;
 � C
holds for an arbitrary univalent holomorphic function f on 
:

2.6. Extension to hyperbolic Riemann surfaces. The quantities M(
); L(
) and
I(
) which were introduced in xx 2.1{2 can be de�ned for general hyperbolic Riemann
surfaces 
 in the same way. Note, however, that we cannot view the boundary of the
surface in general, and hence, we have to interpret the sentence that an annulus A � 

\separates the boundary" as follows: the inclusion mapping A ,! 
 induces the injective
homomorphism �1(A; �) ! �1(
; �) between the fundamental groups. The quasihyper-
bolic metric jdzj=Æ
(z) is also diÆcult to de�ne in the general case because we have no
idea to measure the distance from a given point to the \boundary". We have, however, a
good substitute �̂
; called the Hahn metric, for the quasihyperbolic metric:

�̂
(z) = inff�D(z);D � 
 simply connected and z 2 Dg;

where z is a local parameter of 
; and indeed, this continuous metric is comparable with
the quasihyperbolic metric in the case when 
 is a plane domain (see [26], [24], [52]).
In fact, the uniform perfectness conditions involved with those quantities are still equiv-

alent in this general context.

Theorem 2.7 ([72]). For any hyperbolic Riemann surface R; the following conditions are
equivalent:

1. M(R) < +1;
2. L(R) = 2I(R) > 0; and
3. The Hahn metric �̂R is comparable with the hyperbolic metric �R:

Those Riemann surfaces which satisfy one (and hence, all) of the above three conditions
may be called of bounded geometry (cf. [64]) since they have positive injectivity radii. At
present, however, there seems to be no de�nite terminology for this condition.

3. Analytic characterizations

{ front view of uniform perfectness {

In the previous section, we considered characterizations of uniform perfectness in terms
of geometric properties of the complement. In this section, we try to characterize the
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uniform perfectness of E in terms of the properties of E itself. Of course, E does not
necessarily have a good structure such as complex structures or Riemannian metrics, and
therefore, it usually requires more delicate analysis. In what follows, B(a; r) denotes the
closed disk centered at a with radius r; and D (a; r) denotes the open disk of the same
data.

3.1. Characterizations in terms of Hausdor� contents. Let h : (0;+1)! (0;+1)
be a non-decreasing continuous function satisfying limt!0 h(t) = 0: We denote by Lh(E)
the Hausdor� h-content of a compact set E in C ; which is de�ned as the in�mum of the
sum

P
k h(d(Bk)) taken over all countable covers of E by sets Bk: Also, the limit of the

in�mum of the same sum taken over countable cover Bk satisfying d(Bk) < " only as
"! 0 is known as the Hausdor� h-measure, which will be denoted by Hh(E): Especially
when h(t) = t�; we write L�(E) = Lh(E) and H�(E) = Hh(E): As is clear from the
de�nition, Lh(E) � Hh(E); and therefore, Hh(E) = 0 implies Lh(E) = 0: In turn, the
converse of the latter is also true, in other words, Lh(E) = 0,Hh(E) = 0: The in�mum
of � with H�(E) = 0 is widely known as the Hausdor� dimension of E; which will be
denoted by dimE: By de�nition, for a linear mapping f(z) = sz + t; we can see that
L�(f(E)) = jsj�L�(E) and so on. A characterization of the uniform perfectness is given
by J�arvi-Vuorinen [34] in terms of Hausdor� contents. As a direct consequence, we can
see that a uniformly perfect set has positive Hausdor� dimension. For a more concrete
estimate, see also [72] or the proof below.

Theorem 3.1 (J�arvi-Vuorinen [34]). A compact set E � bC is uniformly perfect if and

only if there exist constants C > 0 and � > 0 such that

L�(E \B(a; r)) � Cr� for all a 2 E n f1g and 0 < r < d(E)=2:(3.1)

3.2. Proof of Theorem 3.1. We follow [72] below. Let 
 = bC n E: Noting the trivial
inequality L�(B(a; r)) � (2r)�; we get the suÆciency immediately. We now show the
necessity. Let 0 < � < �0 := log 2= log(2eM

Æ(
) + 1) and take � > 1 so that � =
log 2= log(2� + 1): Then we see log� > MÆ(
): Set c = 1=(2� + 1):
Assuming that a = 0 and r = 1; it suÆces to estimate L�(E\B) by a positive constant

from below, where B = B(0; 1): Let B1 = B(0; c): By assumption, we see d(E) > 2r = 2;
and hence EnB 6= ;: Since the annulus A = f2c < jzj < 2�cg intersects E by the choice of
�; we can take a point x 2 E \A: Letting B2 = B(x; c); we observe that B1 \B2 = ; and
that B2 � B: In the same way, we can select disjoint two closed disks Bj;1 and Bj;2 inside
Bj of radius c

2: Continuing this procedure, for each (j1; : : : ; jk) 2 f1; 2g
k; we can choose a

closed disk Bj1;:::;jk of radius c
k so that the following conditions are satis�ed: (1) the center

of Bj1;:::;jk is contained in E; (2) Bj1;:::;jk � Bj1;:::;jk�1 and (3) Bj1;:::;jk�1;1 \Bj1;:::;jk�1;2 = ;:
Then

F =
1\
k=1

[
j1;:::;jk2f1;2g

Bj1;:::;jk

is a Cantor set contained in E: In spite of the superuousness for the proof, it may
be interesting to note that the family (Bj1;:::;jk) for a �xed k is a �nite covering of the
set F and

P
d(Bj1;:::;jk)

� = 2k(2ck)� = 2�; and thus, H�(F ) � 2�: We now give a lower
estimate of L�(F ): Let � be the measure which is induced by the Bernoulli measure of the
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equidistribution on f1; 2gN: Namely, � is a Borel probability measure with support F such
that �(Bj1;:::;jk) = 2�k: We now show that �(A) � 18t� for any closed disk A = B(b; t):
We may assume that t < 1 because otherwise this trivially holds. Choose k so that
ck+1 < t � ck: If we set J = fj = (j1; : : : ; jk);A \ Bj 6= ;g; then [j2JBj � B(b; t + 2ck):
Taking the area of disks into account, we obtain #J � (ck)2 � (t + 2ck)2; and hence,
#J � (2 + tc�k)2 � 9: Using the last inequality, we compute �(A) � �([j2JBj) =
#J2�k � 18 � 2�k�1 < 18t�: Now the desired inequality has been shown.
We are now able to get a lower estimate of L�(F ) as follows. Let (An) be an arbitrary

countable cover of F: Setting dn = d(An); we can see that each An is contained in a
closed disk A0

n of radius dn: Therefore, the above inequality can be applied to conclude
�(A0

n) � 18dn
�: From this, we see that

1 = �(F ) �
X
n

�(An) � 18
X
n

dn
�;

and, taking the in�mum over all possible countable cover of F; we �nally get L�(F ) �
1=18: Therefore, we have obtained the inequality L�(E \ B) � 1=18 for any � < �0:
Now we can use the left continuity of �-dimensional Hausdor� content with respect to
the dimension � (see [59]) to get L�0(E \B) � 1=18: In particular, the concrete estimate
dimE � �0 = log 2= log(2eM

Æ(
) + 1) � log 2=(MÆ(
) + log 3) follows.

3.3. Characterization in terms of logarithmic capacity. The logarithmic capacity
CapE of a compact set E in C can be de�ned as the number so that Green's function
G of the (unique) unbounded component 
1 of bC n E with pole at in�nity has the
asymptotic behavior G(z) = log jzj � logCapE + o(1) as z !1: Here, we de�ne CapE
to be 0 if 
1 carries no Green's function. For instance, CapB(a; r) = r; and the relation
Cap f(E) = jsjCapE holds for the linear mapping f(z) = sz + t: Pommerenke has given
the following remarkable characterization of the uniform perfectness.

Theorem 3.2 (Pommerenke [61]). A compact set E � bC is uniformly perfect if and only

if there exists a constant c > 0 with the property that

Cap (E \B(a; r)) � cr; for all a 2 E n f1g and 0 < r < d(E):

Using the characterization of capacity as the trans�nite diameter, Pommerenke has
reached this result by ingenious computations. We will give another proof here by em-
ploying the estimate for Hausdor� contents in x 3.1. If we take a closer look at the proof
due to Tsuji [80, pp. 65{66] for Frostman's theorem: The condition Hh(E) > 0 for some

h with
R 1

0
h(t)dt=t < +1 implies CapE > 0; we can read the following concrete estimate:

CapE � exp

 
�C1

R 1

0
h(t)dt=t

Lh(E)

!
for a compact set E contained in a closed disk of diameter 1; where C1 > 0 is an absolute
constant. We now assume (3.1). Letting f(z) = z=2r; we apply the above estimate to the
set F = f(E \B(a; r)) and the measure function h(t) = t� to obtain Cap (E \B(a; r)) =
2rCap (F ) � 2r exp(�2�C1=�C) because (3.1) implies L�(F ) = (2r)��L�(E \B(a; r)) �
2��C: The desired estimate now follows with c = 2 exp(�2�C1=�C):
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By the above result, the lower capacity density lim infr!0Cap (E \ B(a; r))=r can be
estimated from below. In particular, the Wiener criterion can be applied to conclude
that each point of a uniformly perfect set is regular with respect to the Dirichlet problem
(cf. [80]). Indeed, as we shall see in the next subsection, a stronger regularity holds for
uniformly perfect sets.
Note that there are characterizations in terms of condenser capacities (see [34] or [65]).

3.4. H�older regularity in the Dirichlet problem. Let 
 be an open set with bound-
ary of positive capacity and consider a solution u of the Dirichlet problem

(@2x + @2y)u = 0 in 
; u = ' on @


in the sense of Perron-Wiener-Brelot. For simplicity, we consider only a bounded solution
u for a bounded Borel function ': Then there exists a unique solution u for '; which will
be denoted by u = H
': For the details, the reader is referred to, for instance, [80], [29]
and [16].
The harmonic measure is frequently used to measure the size of sets in the boundary

of a domain (see [56]). Let �F be the de�ning function for a Borel set F in @
: Then
the solution H
�F of the Dirichlet problem in 
 with the boundary data �F is called the
harmonic measure of F relative to 
 and denoted by !(�; F;
): For a �xed z 2 
; the set
function F 7! !(z; F;
) can be regarded as a Radon measure representing the bounded
linear functional ' 7! H
'(z) on the Banach space consisting of bounded continuous

functions on @
: Let E be a compact set in bC and let 
 = bC n E: For each a 2 @b
 and
each 0 < r we denote by !a;r;
 the harmonic measure of 
 \ @B(a; r) relative to 
 \ D

and denote by !̂a;r;
 the harmonic measure of @
 n D (a; r) relative to 
: These are called
the local and global harmonic measures for 
 at a; respectively (see [70]). The minimum
principle implies that !̂a;r;
 � !a;r;
 in 
 \ D (a; r): Then the following result holds.

Theorem 3.3. For a number 0 < � < 1 we consider the following conditions:

(i) There exists a positive constant C such that !a;r;
(z) � C(jz � aj=r)� holds for any

a 2 @b
; 0 < r < d(@
) and z 2 
 \ D (a; r);
(ii) There exists a positive constant C such that !̂a;r;
(z) � C(jz � aj=r)� holds for any

a 2 @b
; 0 < r < d(@
) and z 2 
 \ D (a; r);
(iii) For a boundary function ' on @b
 which is H�older continuous with exponent �; the

solution H
' is H�older continuous with the same exponent, too.

Then, E is uniformly perfect if and only if (i) is valid for some � and the latter implies (ii)
and (iii). If, in addition, 
 is a bounded domain, (i) is equivalent to (ii) and, conversely,
if (iii) is valid for some �0 > �; then (i) is valid for �:

The equivalence of the uniform perfectness to property (i) is essentially due to Ancona
[4], however, he treats only the case of n > 2 there. The statement in the above form can
be found in [70]. We use Theorem 3.2 for the proof. Also the implications (i) ) (ii), (iii)
are due to [70]. The latter part of the theorem is very recently proved by Aikawa [2].
From the above result, in particular, it can be seen that the Green's function on a

domain with uniformly perfect boundary is H�older continuous near the boundary. This
observation was stated in textbook [15] without proof. The probably �rst proof for this
fact appeared in [42] in print. We also �nd a proof in [65]. We remark that the converse
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is not true (see x 3.6). As is noted in [15], from the theorem of Carleson [14] that a com-
pact set of Hausdor� dimension less than � is removable for H�older continuous harmonic
functions with exponent �; we can deduce that the boundary has Hausdor� dimension at
least � under the assumption of condition (i) in Theorem 3.3.

3.5. Characterizations in terms of uniformizing Fuchsian groups. This subject
might be better to be included in the previous section. We have, however, decided to
discuss it here because we need an estimate of logarithmic capacity for the proof. Let

 be a hyperbolic domain in bC and let � be the Fuchsian group which is a covering
transformation group of an analytic universal covering map p : D ! 
 of 
: We then
have the following characterizations.

Theorem 3.4 (Pommerenke [62]). The boundary @
 is uniformly perfect if and only if

each of the following conditions holds:

(i) There exists a constant c1 > 0 such that���� g(�)� �

1� ��g(�)

���� � c1 for all � 2 D and g 2 � n fidg;

(ii) There exists a constant c2 > 0 such thatY
g2�nfidg

���� g(�)� �

1� ��g(�)

���� � c2 for all � 2 D :

From condition (ii), we see that the orbit fg(�); g 2 �g of a point � 2 D under �
is an interpolating sequence with respect to the bounded analytic functions on the unit
disk (see [13]). Condition (i) above is merely rephrasing Theorem 2.2, while condition
(ii) is apparently much more stronger than (i). For the proof, we may assume that

1 2 E = bC n 
: From Theorem 3.2, it follows that for a constant c > 0 the inequality
Cap (E \B(a; r)) � cr holds for all a 2 E nf1g and r > 0: Fix �0 2 D : By replacing p(�)
by p((�+�0)=(1+�0�)) if necessary, we may assume �0 = 0: Set E� = f(a�z0)

�1; a 2 Eg;
where z0 = p(0): Take a point a0 2 @
 so that Æ
(z0) = jz0 � a0j =: r0: Then, we see

CapE� � Cap (E \ B(z0; 2r0))
� � Cap (E \ B(z0; 2r0))=4r0

2

� Cap (E \ B(a0; r0))=4r0
2 � c=4r0:

Noting that r0 � 1=�
(z0) = jp0(0)j; we �nally get CapE� � c=4jp0(0)j: We now let G be
Green's function of 
 with pole at z0: Then G(z) = log(1=jz� z0j)� logCapE� + o(1) as
z ! z0: On the other hand, Myrberg's theorem [80, p.522] implies that

G(p(�)) =
X
g2�

log

�����1� g(0)�

� � g(0)

�����
= log

1

j�j
+

X
g2�nfidg

log
1

jg(0)j
+O(j�j);

and hence,
Q

g2�nfidg jg(0)j = jp0(0)jCapE� � c=4: Now the proof is complete.
We remark that other characterizations of the uniform perfectness in terms of Green's

function or Fuchsian groups are given by Gonz�alez [23].
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3.6. Markov inequalities. There is a series of results, usually called the Markov in-
equalities, which are playing an important role in approximation theory. It was originally
utilized for the approximation of a real function on the interval [0; 1]; however, it have been
extended in various directions and found many applications. We give some of those formu-
lations here. A compact set E in the complex plane is said to preserve the global Markov

inequality if there exist constants C > 0 and � � 1 such that kP 0kE � C(degP )�kPkE
holds for any polynomial P (of a complex variable). Here kfkE = supfjf(z)j; z 2 Eg:

A compact set E in bC is said to preserve the local Markov inequality if for each positive
integer k there exists a constant c = c(k) such that rkP 0kE\B(a;r) � ckPkE\B(a;r) holds
for all a 2 E; 0 < r < d(E) and polynomial P of degree k in z: Then the following can
be shown.

Theorem 3.5 (Lithner [42]). A compact set E � bC is uniformly perfect if and only if

E preserves the local Markov inequality. Furthermore, if E � C in addition, then E
preserves the global Markov inequality.

It is known that if Green's function of a domain with pole at in�nity is H�older continuous
near the boundary then the global Markov inequality is preserved. Lithner [42] gave a
non-uniformly perfect Cantor set whose complement carries H�older continuous Green's
function. In particular, we see that the preservation of the global Markov inequality does
not necessarily imply the preservation of the local one. Note that a similar domain to
Lithner's, which has, however, no degenerate boundary components, can be found in [70].

4. Remarkable properties of uniformly perfect sets

In this section, we collect some of remarkable properties of uniform perfectness, which
does not necessarily give characterizations of it.

4.1. The bottom of spectrum. In this subsection, 
 means a hyperbolic domain. We
recall the fact that @
 is uniformly perfect if and only if the in�mum of the hyperbolic
lengths of simple closed geodesics of 
 is positive. On the other hand, through the Selberg
trace formula, it is recognized that there is a strong analogy between the length spectrum
of simple closed geodesics and the spectrum of the Laplacian on 
 (see, for instance, [11]).
We will explain that, in our context, there is a result in this direction.
Let �� be the Laplace-Beltrami operator on 
 with respect to the hyperbolic metric,

namely, �� = ��
(z)
�2(@2x + @2y): Since this acts on the space C1

c (
) as a non-negative
self-adjoint operator, �� can be uniquely extended to a(n unbounded) non-negative self-
adjoint operator on L2(
) and its spectrum is contained in [0;+1): The in�mum of the
spectrum will be called the bottom of the spectrum of 
 and will be denoted by �(
):
This quantity is known to connect with other global geometric quantities (see [77]). In
particular, if we denote by �(
) the critical exponent of the Fuchsian group �
 uniformiz-
ing 
; which is also known to equal the Hausdor� dimension of the conical limit set of �


(see [57]), then by the Elstrodt-Patterson-Sullivan theorem [77] we obtain the relation

�(
) =

(
1; if 0 � �(
) � 1

2
;

4�(
)(1� �(
)); if 1
2
� �(
) � 1:
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Note, in particular, that �(
) > 0 , �(
) < 1: Fern�andez showed the following result
(see also [19] and [3] for related topics).

Theorem 4.1 (Fern�andez [18]). The bottom �(
) of the spectrum of 
 is positive for a

domain with uniformly perfect boundary.

By using Cheeger's inequality, the quantitative result �(
) � 1=(1+�=L(
))2 has been
obtained [71]. As is discussed in [19], the converse is not true in general.

4.2. Holomorphic quadratic di�erentials. We will give a brief exposition of the re-
lation between the uniform perfectness and the Bers spaces, which are most important
Banach spaces in connection with the Teichm�uller spaces. For a holomorphic quadratic
di�erential ' = '(z)dz2 on a hyperbolic domain 
 we de�ne the two kinds of norm
k'k1 =

RR


j'(z)jdxdy; k'k1 = supz2
 �
(z)

�2j'(z)j and we denote by A2(
) and B2(
)
the corresponding complex Banach spaces. The norm k'k1 is same as k'k2;
 de�ned in
x 2.5 and called the hyperbolic norm or the Nehari norm. Whether the inclusion relation
A2(
) � B2(
) holds had been a long-standing problem, and was completely solved by
Niebur-Sheingorn [58]. This inclusion relation holds if and only if L�(
) = inf `
() is
positive, where the in�mum is taken over all nontrivial, piecewise smooth, closed curves 
in 
 which are not loops winding about one puncture. A more quantitative result can be
found in [49] or [69]. Since L(
) = L�(
) holds if 
 has no punctures, we, in particular,
obtain the following.

Theorem 4.2. Let 
 be a hyperbolic plane domain without punctures. Then A2(
) �
B2(
) holds if and only if @
 is uniformly perfect.

In terms of holomorphic quadratic di�erentials, the author introduced the conformally
invariant metric q
(z) = supfj'(z)j1=2; ' 2 A2(
); k'k1 = �g in [73] and [69]. Using this
metric, the following characterizations of the uniform perfectness can be obtained. These
characterizations are also extended to general hyperbolic Riemann surfaces and actually
are equivalent to be of bounded geometry.

Theorem 4.3 ([69]). For a hyperbolic domain 
; the boundary is uniformly perfect if and

only if one of the following conditions holds:

(i) The metric q
 is comparable with the Hahn metric �̂
;
(ii) The metric q
 is comparable with the hyperbolic metric �
:

We may replace the Hahn metric by the quasihyperbolic metric in the case when 
 � C :
We note that q
 is always majorized by the Hahn metric, whereas there is no natural order
relation between q
 and �
 (see [73]).

4.3. Miscellaneous properties. Here we give a small collection of references where
other characterizations or properties of uniform perfectness can be found. For charac-
terizations in terms of BMO spaces, see [60], [24] and [28]. The idea to characterize the
uniform perfectness by the relationship between the hyperbolic distance and the Euclidean
distance are due to [61] or [43]. The relation with the quasiconformal homogeneity was
pointed out by [46].
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5. Examples of uniformly perfect sets

In the preceding sections, we have seen general properties of uniformly perfect sets.
In this section, we will survey what kind of sets are actually uniformly perfect through
concrete examples.

5.1. Kleinian groups. A Kleinian group is a discrete subgroup of the complex Lie group
PSL(2; C ): The reader is referred to [48] or [50] for details. The region of discontinuity

of a Kleinian group G concerning the action on bC will be denoted by 
(G) and the
complement, which is called the limit set of G; will be denoted by �(G): For simplicity,
we consider only Kleinian groups without elliptic elements. To avoid the trivial case, we
also restrict ourselves to the non-elementary case when the limit set consists of at least
three points, and hence, is perfect. Then we can show the following.

Theorem 5.1 ([75]). If the quotient Riemann surface R = 
(G)=G satis�es L�(R) > 0;
then the limit set �(G) is uniformly perfect.

We use condition (i) in Theorem 2.2. Indeed, let  be an arbitrary nontrivial closed
curve in 
(G): Then the projection 0 of  onto R is also a nontrivial closed curve and is
not homotopic to a multiple of a loop winding around a puncture once. (The latter can be
seen from the fact that �(G) is perfect.) Therefore, we compute `
() � `R(

0) � L�(R)
and get L(
(G)) � L�(R) > 0:
By the theorem of Niebur-Sheingorn stated in x 4.2, we see that the condition L�(R) > 0

is equivalent to A2(R) � B2(R): The condition L
�(R) > 0 always holds for a Riemann sur-

face of �nite analytic type, and hence, we conclude that the limit set of a non-elementary,
�nitely generated, Kleinian group is uniformly perfect by Ahlfors' �niteness theorem.
We note here historical remarks. The above result was proved by [8] in the case of

�nitely generated Schottky groups, however, in view of the characterization of the uniform
perfectness in terms of capacity density, it seems to be implied by a result of Tsuji [79].
The �rst proof appeared in [62] for the case of general �nitely generated Kleinian groups.
Canary [12] extended it to the case of analytically �nite Kleinian groups. We remark that
�(G) may not be uniformly perfect when G is in�nitely generated. A concrete example
can be found in [75]. The uniform perfectness of the limit set has been e�ectively used
by, e.g., Bishop-Jones [10] in the theory of Kleinian groups.

5.2. Complex dynamics. Let f be a rational function of one variable with deg f � 2:
Then the Julia set J(f) is invariant under the action of f; and thus, it has a kind of
self-similarity. For the fundamentals of complex dynamics such as Julia sets, the reader
is referred to, for instance, [6], [15] or [54]. We know the following fact.

Theorem 5.2. The Julia set of a rational function of degree at least two is uniformly

perfect.

This result was proved around 1992 by Ma~ne-da Rocha [45], Hinkkanen [32] and Ere-
menko [17], independently. The case when f is hyperbolic was shown by Pommerenke
[62] earlier. Their methods, more or less, relied on the contradiction except for that of
Eremenko, so no concrete estimate was given. The author has given an explicit estimate
in [74] for uniform perfectness of the Julia set in terms of geometric quantities de�ned in
the Fatou set. (In fact, the idea was same as that of Eremenko, however, his paper [17]
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had not been submitted, so the author had not been aware of that paper after comple-
tion of the manuscript.) The example given by Baker [5] tells us that the Julia set of a
transcendental entire function is no longer uniformly perfect in general. Zheng [89], [87]
made investigations in the case of transcendental meromorphic functions.
As for the Julia set of a rational semigroup, Hinkkanen-Martin [33] proved the uniform

perfectness in the case when each generator has degree at least two, and Stankewitz [68]
showed the general case including a �nitely generated Kleinian group and a self-similar
fractal. Stankewitz [67] investigated also attractors.

6. Prospects

We end this article with possible directions of future investigations.

6.1. Higher dimensional case. In this article, we have focused on the two-dimensional
case, however, we can consider the same notion in Euclidean space or sphere of general
dimension, and even in certain metric spaces. There are several researches in this direction
already. Indeed, Ancona [4], Siciak [65] and Aikawa [2] discuss the uniform perfectness in
higher dimensional cases from the potential theoretic point of view. Note, however, that
the form of Green kernel is essentially di�erent between the cases n = 2 and n � 3; and
hence, equivalent notions in two-dimensional case might have di�erent generalizations.
Vuorinen [83] and J�arvi-Vuorinen use the characterization of the uniform perfectness in

terms of condenser capacity to investigate the boundary behaviour of higher-dimensional
quasi-regular mappings.
Tukia-V�ais�al�a [81] treats the case of general metric spaces, however, there are few

substantial investigations except for, e.g., Trotsenko-V�ais�al�a [78] in this direction.
We also notice that the uniform perfectness discussed here is, by de�nition, essentially a

one-dimensional concept along the radial direction. Therefore, there is a natural limitation
of the estimate of Hausdor� dimension from below. If we have a notion which generalizes
the uniform perfectness in this respect, then we would obtain a more e�ective estimate. As
such a notion, we may take a similar concept to the preservation of Markov inequalities.
A condition for a set to preserve the local Markov inequality for real polynomials of n
variables is known, for instance, by [37]. A more generalized concept has been given by
V�ais�al�a-Vuorinen-Wallin [82]. In addition, there is a lower estimate of Hausdor� dimension
in terms of Markov inequalities, see [85].

6.2. Opposite notions. The notion of uniform perfectness is concerning the density
of the set. On the other hand, the notion concerning the coarseness of the set might
be useful, too. As such a notion, we may draw the reader's attention to the notion of
porosity. This means that there exists a constant c > 0 such that for any a 2 E and
r > 0 we can take a ball of the form B(b; cr) in B(a; r) such that B(b; cr)\E = ;: Then,
by using the typical argument of the Lebesgue points, we can immediately conclude that
the set has area zero. Moreover, by the aid of packing dimensions, we would get an upper
estimate of Hausdor� dimension of the set. Hence, this concept is e�ectively utilized, for
instance, in the theory of complex dynamics (see, e.g., [39], [51] and [63]).
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6.3. Re�nement. The uniform perfectness is invariant under the similarities. If we
abandon it and allow c to depend on r in the de�nition in x 1.1, then we will get a more
re�ned notion. Even in this case, a detailed analysis will enable us still to get useful
information about the set. There seems to be quite few researches in this direction so far,
however, the author is trying to contribute something [76].
Recall that the uniform perfectness is uniform not only in r 2 (0; d(E)) but also in

a 2 E: Thus it can be localized for a �xed point a 2 E: This approach was already used
by Vuorinen [84] to investigate angular limits of quasiconformal mappings. Zheng [88]
has recently revealed that the localized condition can give good enough results. From the
same point of view, the strong regularity is investigated in the Dirichlet problem [70].
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