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Abstract. This note is a summary of the joint work [6] with Ji-A Kim at POSTECH,
Korea, with some expository accounts on the Schwarzian derivative.

1. Schwarzian derivative

For a non-constant meromorphic function f in a plane domain, the Schwarzian deriva-
tive Sf of f is defined by

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

It is easily seen that Sf is holomorphic at z0 if and only if f is locally univalent at z0.
The Schwarzian derivative annihilate the effect of Möbius transformations: Sg = 0 if
and only if g is (a restriction of) a Möbius transformation and, moreover, SL◦f = Sf for
any Möbius transformation L. Therefore, one may think that the Schwarzian derivative
measures the deviation of the function from Möbius transformations. As evidence of this
heuristic principle, we first point out the following classical result.

Theorem 1.1. If f is univalent meromorphic in the unit disk D, then

|Sf(z)| ≤ 6(1 − |z|2)−2.

Conversely, if a meromorphic function f in D satisfies

|Sf(z)| ≤ 2(1 − |z|2)−2,

then f is univalent in D. The numbers 6 and 2 are sharp.

The former result was first proved by Kraus [7] but had been forgotten for a long
time. Nehari [10] re-discovered it and showed the latter result. The Koebe function
K(z) = z/(1 − z)2 satisfies

SK(z) =
−6

(1 − z2)2
,

which shows the bound 6 is sharp. On the other hand, the function L(z) = (1/2) log(1 +
z)/(1 − z) which maps D onto the parallel strip |Im w| < π/2 satisfies

SL(z) =
2

(1 − z2)2
.
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Because the parallel strip is not a quasidisk, this example shows that the bound 2 is
sharp in the latter part of the theorem. This reasoning is explained, for instance, in
[8]. Hille [5] showed the sharpness of 2 directly by giving the non-univalent example
f(z) = [(1 + z)/(1− z)]iε, ε > 0.

There are other variations of Nehari’s univalence criterion:

Theorem 1.2 (Nehari [10], Pokornyi [12]). If f satisfies one of the following conditions
in D, then f is univalent in D :

|Sf(z)| ≤ π2

2
,

|Sf(z)| ≤ 4(1 − |z|2)−1.

These numbers are sharp.

Extremal functions are given, respectively, by

tan
πz

2
and

z

2(1− z2)
+

1

4
log

1 + z

1 − z
.

Based on these results, more general univalence criteria were deduced by Avkhadiev
and et al (see [1]).

2. Connection with a linear ODE

For a given holomorphic function ϕ in the unit disk D, we can construct a locally
univalent meromorphic function f so that Sf = ϕ in D. Indeed, let y0 and y1 be the
analytic solutions to the ODE

2y′′ + ϕy = 0

in D with the initial conditions

y0(0) = 1, y1(0) = 0,

y′
0(0) = 0, y′

1(0) = 1.

Note here that the Wronskian is identically 1 :

y0y
′
1 − y′

0y1 ≡ 1.

Then the quotient f = y1/y0 is a desired one, because the logarithmic derivative of

f ′ =
y0y

′
1 − y′

0y1

y2
0

=
1

y2
0

yields
f ′′

f ′ = −2y′
0

y0
.

Hence,

Sf =

(
−2y′

0

y0

)′
− 1

2

(
−2y′

0

y0

)2

= −
(

2y′′
0

y0

)
+ 2

(
y′

0

y0

)2

− 2

(
y′

0

y0

)2

= ϕ.
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The constructed function f satisfies f(0) = 0, f ′(0) = 1 and f ′′(0) = 0. The third
condition have been missed by some authors (including myself [13]). This condition is,
however, too strong as long as the classical theory of univalent functions is concerned.
Therefore, we will introduce special classes of normalized functions.

Let M be the set of meromorphic functions f in the unit disk D with f(0) = 0, f ′(0) = 1.
For a complex number c, set

M(c) = {f ∈ M : f ′′(0) = 2c}.
Note that f ∈ M(c) has a series expansion of the form f(z) = z + cz2 + · · · . Then we
can see that for ϕ and for c ∈ C, there is the unique function f = fϕ,c in M(c) for which
Sf = ϕ holds. Indeed, such an f can be given by

fϕ,c =
y1

y0 − cy1

=
fϕ,0

1 − cfϕ,0

,

where fϕ,0 = y1/y0.
Set K(ϕ) = {c ∈ C : 1/c /∈ fϕ,0(D)}. Then the set K(ϕ) is always compact. Note

that fϕ,c is pole-free (i.e., analytic) if and only if c ∈ K(ϕ). It may be interesting to see
that |c| ≤ 2 for each c ∈ K(ϕ) if fϕ,0 is univalent meromorphic. Recall here that the
Koebe one-quarter theorem asserts that every omitted value ω of a univalent function
f(z) = z + a2z

2 + · · · satisfies the inequality |ω| ≤ 1/4, namely, c = 1/ω satisfies |c| ≤ 4
and the number 4 is best possible. The constraint |c| ≤ 2 in our situation comes from the
special nature f ′′(0) = 0 of f.

3. Weight functions

A function A(x), 0 ≤ x < 1, is called a weight function if it is locally Lipschitz, non-
decreasing, and positive. A typical and important example is given by A(x) = C(1−x2)−µ,
where C > 0 and µ ≥ 0 are constants.

Let U0, U1, V0 and V1 be the functions on [0, 1) determined by the initial value problem
of the ODE’s:

2U0
′′ = AU0, U0(0) = 1, U0

′(0) = 0,

2U1
′′ = AU1, U1(0) = 0, U1

′(0) = 1,

2V0
′′ = −AV0, V0(0) = 1, V0

′(0) = 0,

2V1
′′ = −AV1, V1(0) = 0, V1

′(0) = 1.

When we need to indicate the weight function A, we write, for example, U0(x, A) =
U0(x). Note that U0 > 0 and U0

′ > 0 hold on the interval [0, 1) for any weight function A.
Nehari [11] established a general univalence criterion:

Theorem 3.1. Let A be a weight function.

(i) If A(x)(1 − x2)2 is non-increasing in 0 ≤ x < 1, and
(ii) if V0(x, A) is positive for 0 ≤ x < 1,

then the condition |Sf (z)| ≤ A(|z|) for a function f ∈ M implies univalence of f in D.

Example 3.2. For A(x) = π2/2, one has V0(x) = cos(πx/2).
For A(x) = 4(1 − x2)−1, one has V0(x) = 1 − x2.
For A(x) = 2(1 − x2)−2, one has V0(x) =

√
1 − x2.
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In this note we consider the problem: what geometric properties can we say about those
functions with prescribed growth of the Schwarzian derivatives?

We remind the reader of basic terminology in univalent function theory (see [3] for a
conprehensive treatment). A function f ∈ M is called starlike if f is univalent analytic
and the image f(D) is starlike with respect to the origin, in other words,

Re
zf ′(z)

f(z)
> 0, |z| < 1.

A function f ∈ M is called convex if f is univalent analytic and the image f(D) is
convex, in other words,

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, |z| < 1.

For a constant α ∈ [0, 1), a function f ∈ M is called starlike of order α if

Re
zf ′(z)

f(z)
> α, |z| < 1.

Strohhäcker theorem (cf. [3]) asserts that a convex function is starlike of order 1/2. Starlike
functions of order 1/2 play an important role also in the theory of convolution (Hadamard
product) (cf. [9]).

Note that these properties are not preserved by post-composition of Möbius maps unlike
univalence. Therefore, we do need the third normalization f ′′(0) = 2c.

4. Main results

Theorem 4.1 (Starlikeness Theorem). Let A be a weight function and c be a complex
number. Suppose

2

∫ 1

0

U0
′(x)U1(x)dx + |c|U1(1)2 ≤ 1.

If a function f ∈ M(c) satisfies |Sf(z)| ≤ A(|z|) in |z| < 1, then f is starlike of order
1/2.

As the special case when A is a positive constant and c = 0, we obtain

Corollary 4.2. Let C0 = 2β2
0 ≈ 2.37036, where β0 is the unique positive root of the

equation sinh(2β) = 4β. If a function f ∈ M(0) satisfies the inequality |Sf(z)| ≤ C0 in
|z| < 1, then f is a starlike function of order 1/2. The constant C0 is sharp.

Gabriel [4] proved that |Sf(z)| ≤ C ′
0 implies starlikeness of f ∈ M(0), where C ′

0 =

2β ′
0
2 ≈ 2.71707 and β ′

0 is the unique root of the equation 2β = tan β in 0 < β < π/2.
On the other hand, Chiang [2] showed that C ′

0 cannot be replaced by a larger number
than C ′′

0 = (ξ2 + η2)/2 ≈ 4.6351, where ξ and η are the smallest positive roots of the
equations ξ tan ξ = −1 and η tanh η = 1. By some experiments, it is likely that C ′′

0 is the
best possible constant for starlikeness.

Theorem 4.3 (Convexity Theorem). Let A be a weight function and c be a complex num-
ber. Suppose that the functions V0 and V1 satisfy the inequalities

V0(x) − |c|V1(x) > 0, 0 ≤ x < 1,
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and

− lim
x→1−

V0
′(x) − |c|V1

′(x)

V0(x) − |c|V1(x)
≤ 1

2
.(4.1)

If a function f ∈ M(c) satisfies |Sf(z)| ≤ A(|z|) in |z| < 1, then f is convex.

As a corollary, we obtain an improvement of a result of Chiang [2].

Corollary 4.4. Let C1 = 2β2
1 ≈ 0.853526, where β1 is the unique root of the equation

2β tan β = 1 in 0 < β < π/2. If a function f ∈ M(0) satisfies the inequality |Sf(z)| ≤ C1

in |z| < 1, then f is a convex function.

The constant C1 above is not sharp. More precisely, C1 is the sharp constant for which
|Sf (z)| ≤ C1 implies the inequality |zf ′′(z)/f ′(z)| < 1 in |z| < 1. As Chiang [2] showed,

the constant C1 cannot be replaced by a larger number than C ′
1 = 2β ′

1
2 ≈ 1.19105, where

β ′
1 is the unique positive root of the equation β tanh β = 1/2.

5. Growth theorems

Our main theorems are based on some growth theorems for solutions to the ODE
introduced earlier.

Lemma 5.1. Let A be a weight function and suppose that |ϕ(z)| ≤ A(|z|) in |z| < 1.
The solutions y0 and y1 to the differential equation 2y′′ + ϕy = 0 in D with the initial
conditions y0(0) = 1, y′

0(0) = 0, y1(0) = 0, y′
1(0) = 1 then satisfy the inequalities

Ṽ0(|z|, A) ≤|y0(z)| ≤ U0(|z|, A),

|y′
0(z)| ≤ U0

′(|z|, A),

Ṽ1(|z|, A) ≤|y1(z)| ≤ U1(|z|, A),

|y′
1(z)| ≤ U1

′(|z|, A)

for z ∈ D, where Ṽ (x) = V (x) for 0 ≤ x < x0 and Ṽ (x) = 0 for x ≥ x0 and x0 is the
smallest positive zero of V (x) (if there is no such zero, set x0 = 1).

Lemma 5.2. Under the same hypothesis as in the previous lemma, let y2 = y0 − cy1,
where c is a complex constant for which the function V2 = V0 − |c|V1 is positive on (0, 1).
Then the inequality ∣∣∣∣y

′
2(z)

y2(z)

∣∣∣∣ ≤ −V2
′(|z|)

V2(|z|)(5.1)

holds for every z ∈ D.

Idea of proof. For a fixed ζ ∈ ∂D, we set w(t) = y′
2(tζ)/y2(tζ) and v(t) = −V ′

2(t)/V2(t).
Then, the function w satisfies the Riccati equation

w′ = −ϕ

2
− w2.

Hence, the function u(t) = |w(t)| satisfies the differential inequality

u′ ≤ |w′| ≤ A

2
+ u2.
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Similarly, the function v satisfies v′ = A/2+v2. The following is a specialized comparison
theorem for the present situation, from which the desired inequality follows.

Lemma 5.3 (cf. Walter [14, p. 96]).
Let A be a non-negative continuous function on [0, 1) and set Pw = w′ − A/2 − w2. If
absolutely continuous real-valued functions u, v on [0, 1) satisfy the inequalities
(a) Pu ≤ Pv a.e. in [0, 1) and
(b) u(0) ≤ v(0),
then u ≤ v holds in [0, 1).

Integrating the inequality (5.1), we obtain the following result as a corollary.

Corollary 5.4. Under the same circumstances as in Lemma 5.2, the inequality | log y2(z)| ≤
− log V2(|z|) holds in |z| < 1 and, in particular,

V0(|z|) − kV1(|z|) ≤ |y0(z) − cy1(z)| ≤ 1

V0(|z|)− kV1(|z|) , |z| < 1.

Proof of Starlikeness Theorem. Let f = y1/y2, where y2 = y0 − cy1. Then the quantity
p(z) = zf ′(z)/f(z) satisfies

1

p(z)
=

y1(z)y2(z)

z
=

∫ 1

0

(
y1y2

)′
(tz)dt

= 1 + 2

∫ 1

0

y1(tz)y′
2(tz)dt.

We use the growth theorem to get∣∣∣∣ 1

p(z)
− 1

∣∣∣∣ ≤ 2

∫ 1

0

U1(t|z|)U2
′(t|z|)dt

≤ 2

∫ 1

0

U1(t)U2
′(t)dt

= 2

∫ 1

0

U1(t)U0
′(t)dt + |c|U1(1)2.

We now conclude that |1/p(z) − 1| < 1, which is equivalent to Re p(z) > 1/2.

Proof of Convexity Theorem. Use the same notation as in the previous proof. Further we
set V2 = V0 − |c|V1. Then, since f ′ = y−2

2 ,

1 +
zf ′′(z)

f ′(z)
= 1 − 2z

y′
2(z)

y2(z)
.

By the second growth lemma, ∣∣∣∣2z y′
2(z)

y2(z)

∣∣∣∣ ≤ −2|z| V2
′(|z|)

V2(|z|) .

The last term is certainly not greater than 1. Therefore, Re (1 + zf ′′(z)/f ′(z)) > 0.



GEOMETRIC PROPERTIES OF FUNCTIONS WITH SMALL SCHWARZIAN DERIVATIVES 7

6. Examples

The simplest case is when A is a positive constant. If we write A = 2β2, where β is a
positive number, then

U0(x) = cosh(βx),

U1(x) = sinh(βx)/β,

V0(x) = cos(βx),

V1(x) = sin(βx)/β.

For A(x) = C(1−x2)−2, where the constant C is allowed to be negative for convenience.
If we write C = 2(4α2 − 1), then

U0(x) =
√

1 − x2 cosh

[
α log

(
1 + x

1 − x

)]
,

U1(x) =

√
1 − x2

2α
sinh

[
α log

(
1 + x

1 − x

)]
.

However, in this case, we cannot expect a good result concerning convexity or starlikeness
as is described in [6].

For A(x) = C(1 − x2)−1 with positive constant C = (1 − α2)/2,

U0(x) = F (−1+α
4

,−1−α
4

; 1
2
; x2)

U1(x) = xF (1+α
4

, 1−α
4

; 3
2
; x2),

where F (a, b; c; x) stands for the hypergeometric function.
As a corollary, we get

Corollary 6.1. Let C2 = (1 + β2
2)/2 ≈ 1.52444, where β2 is the unique positive root of

the equation ∫ 1

0

x2F (3+iβ
4

, 3−iβ
4

; 3
2
; x2)F (1+iβ

4
, 1−iβ

4
; 3

2
; x2)dx =

2

1 + β2
.

If a function f ∈ M(0) satisfies the inequality |Sf(z)| ≤ C2/(1 − |z|2) in |z| < 1, then f
is a starlike function of order 1/2. The constant C2 is sharp.

Note that the convexity counterpart for this choice, unfortunately, does not hold because
the left-hand side in (4.1) diverges for any choice of c. Indeed, the exponent −1 is critical.
If 0 ≤ µ < 1, then the left-hand side in (4.1) converges for A(x) = C(1 − x2)−µ (see [6]
for details).
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