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Abstract. A compact set C in the Riemann sphere is called uniformly perfect if
the moduli of annuli separating C are bounded. Ma~n�e-da Rocha and Hinkkanen
showed independently the uniform perfectness of the Julia sets of rational maps
of degree � 2; but they presented no explicit bounds for uniform perfectness. In
this note, we shall provide such an explicit bound and, as a result, we give another
proof of uniform perfectness of the Julia sets. As an application, we refer to a lower
estimate of the Hausdor� dimension of the Julia sets.

1. Introduction

Let C be a closed set in the Riemann sphere bC and 
 its complement. We say C
is uniformly perfect if there exists a constant 0 < c < 1 such that C \ fz 2 C ; cr <
jz � aj < rg 6= ; for any a 2 C and 0 < r < diam(C); where diam denotes the
Euclidean diameter.
The notion of uniform perfectness �rst appeared in Beardon-Pommerenke [3], and

was investigated more deeply by Pommerenke [9] and [10], and afterwards by many
authors (see [12] and its references). By de�nition, the sets with some kind of self-
similarities are expected to have uniform perfectness. In fact, the limit sets are known
to be uniformly perfect for a wide class of Kleinian groups (cf. Sugawa [11]). On the
other hand, Pommerenke [10] �rst showed the uniform perfectness of the Julia sets
of hyperbolic rational maps. Later, Ma~n�e-da Rocha [8] and Hinkkanen [6] proved
in the case of general rational maps of degree � 2; independently. For a simpler
proof, see the textbook [4] by Carleson and Gamelin. But, their proofs are done
by contradiction, thus no explicit bounds for uniform perfectness are given. In this
note, we shall present such an explicit bound and also exhibit some applications of
this result. Our proof employs the hyperbolic geometry, and hence is di�erent from
ones of the above authors. As Hinkkanen remarked in [6], we should note that there
exists an entire function whose limit set is not uniformly perfect.
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We will state the main result in the next section as well as fundamental de�nitions
and notation. In Section 3, we shall discuss the connection between branched cov-
erings and the uniform perfectness, which will be a key to prove our main theorem.
Section 4 is devoted to prove our main theorem, and we make an essential use of
Sullivan's No Wandering Domains Theorem. We shall give applications of the main
result to the estimations of Hausdor� dimension, the (logarithmic) capacity density
of the Julia set and the Poincar�e metric of the Fatou set in Section 5. In the last
section, as a special case, we investigate the quadratic family of polynomials. In
particular, we present a concrete estimate for a subclass of this family.
Finally, the author would like to express his hearty gratitude to Professors M.

Taniguchi and K. Matsuzaki for helpful comments.

2. Main result

Let C be a closed set in the Riemann sphere containing at least three points and

 its complement. We denote by A
 and AÆ


 the sets of annuli and round annuli,
respectively, in 
 separating C; where annuli mean doubly connected domains and
round annuli do special annuli of the form fz 2 C ; r1 < jz � aj < r2g for some a 2 C

and 0 � r1 < r2 � 1: The modulus m(A) of an annulus A is the number m such
that A is conformally equivalent to the round annulus fz; 1 < jzj < emg: We set

M
 = sup
A2A


m(A); MÆ

 = sup

A2AÆ



m(A);

and call them the modulus and the round modulus of 
: (If A
 and/or AÆ

 is empty,

then we de�ne M
 = 0 and/or MÆ

 = 0; respectively.) For these constants, it is

known that 1
2
M
 � 1:7332 � � � � MÆ


 � M
; and that if 
 � C ; M
 � 2:8911 � � � �
MÆ


 � M
 (cf. [12]).
It is easily veri�ed that C is uniformly perfect if and only ifMÆ


 <1; equivalently
M
 <1:
Next, for later use, we consider quantities determined by the hyperbolic geome-

try of 
: Since #C � 3; each component D of 
 is hyperbolic, i.e., there exists a
holomorphic universal covering map p : H ! D from the upper half plane onto D:
Thus D can be regarded as the quotient space H =� of H over the covering transfor-
mation group � = f 2 PSL(2;R); p Æ  = pg: Since the hyperbolic (or Poincar�e)

metric �H (z)jdzj = jdzj
2Imz

is invariant under the action of PSL(2;R); D inherits the
hyperbolic metric �D(z)jdzj so that p : H ! D is a local isometry with respect to the
hyperbolic metric, i.e., �H = p��D: Therefore, we can de�ne the hyperbolic metric �

of 
 componentwise.
The hyperbolic distance d
(z0; z1) of a pair of points z0; z1 in the same component of


 can be de�ned by inf�
R
� �
(z)jdzj; where the in�mum is taken over all paths joining

z0 to z1 in 
: We also di�ne d
(z0; z1) = +1 if z0 and z1 do not belong to the same
component of 
: For z 2 
 we denote by �
(z) the injectivity radius of 
 at z; that
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is, �
(z) is the maximal radius r so that the hyperbolic disk fw 2 
; d
(z; w) < rg
is simply connected.
Let C
 denote the set of free homotopy classes of non-trivial loops in 
; where a

loop (=closed curve) is called non-trivial if this is not null-homotopic (=contractible)
in 
: For a loop � in 
; we de�ne the length of it by

`
(�) =
Z
�
�
(z)jdzj;

and for the free homotopy class [�] represented by �; we de�ne

`
[�] = inf
�02[�]

`
(�
0):

Finally, we set

L
 = inf
[�]2C


`
[�]:

(If C
 is an empty set, we set L
 = +1:) We remark that the injectivity radius
�
(z) is equal to the half of the in�mum of lengths of non-trivial loops in 
 passing
through z: In particular, L
 is nothing other than twice the (global) injectivity radius
infz2
 �
(z) of 
:
Concerning the constant L
; the following estimate is fundamental.

Proposition 2.1 ([12]).

L
 � �2

M


� minfL
eL
 ; L
2



2
coth2(L
=2)g:

In particular, M
 <1 if and only if L
 > 0:

In order to estimate M
 from above, by this proposition, we have only to do L

from below. Now let us state the main theorem. For basic de�nitions and results
about the complex dyamics of the rational maps, we refer to the textbook [2] by
Beardon as a general reference.
Let f : bC ! bC be a rational map of degree d � 2: We denote by J = Jf and


 = 
f the Julia set and the Fatou set of f; respectively. (In other words, 
f is the

domain of normality of the iteration family ffngn=1;2;��� of f and Jf = bC n
f :) Note
that 
f is completely invariant under f; precisely, f(
f ) = 
f = f�1(
f ):
We denote by Crit(f) the set of critical points of f in the Fatou set 
f and let

U1; � � � ; Us be the complete list of the components of 
f which contains at least
one critical point of f and is not simply connected. And we set Wj = f(Uj) and
Cj = Crit(f)\Uj for j = 1; � � � ; s: Note here that #Crit(f) � 2d� 2; so s � 2d� 2:
Now we introduce two kinds of curve family: S(v1; v2) and T (v); for v1; v2; v 2 f(Cj)
with v1 6= v2: Let S(v1; v2) and T (v) consist of the loops � : S1 ! Wj; where S1

denotes the unit circle fz 2 C ; jzj = 1g; satisfying the conditions (a), (b), (c) and
(a), (b'), (c), respectively, in the following:
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(a) � is contractible in Wj:
(b) � passes through v1 and v2:
(b') � passes through v essentially two times, at least.
(c) There exists a non-trivial loop � in Uj such that f�(�) = �:

More precisely, the condition (b') says that there exist distinct points �0 and �1 in
S1 with �(�0) = �(�1) = v such that the restrictions �jI1 and �jI2 of the loop � are
both non-trivial closed curves in Wj; where I1 and I2 are the connected component
of S1 n f�0; �1g: And we set

aj(v1; v2) = inf
�2S(v1;v2)

`
(�); bj(v) = inf
�2T (v)

`
(�) and

aj = min
v1;v22f(Cj);v1 6=v2

aj(v1; v2); bj = min
v2f(Cj )

bj(v);

where we set aj = +1 if #f(Cj) = 1:
Finally, let A1; � � � ; At be the complete system of representatives of the cycles of

Herman rings of f: We note here that, by Shishikura's theorem, 0 � t � d � 2;
in particular, if d = 2 there are no Herman rings. And, since the Julia set has no
isolated points, the Herman rings have �nite moduli, so LAk

> 0 for all k:
Now we are ready to state our main theorem.

Theorem 2.2 (Main Thoerem). For an arbitrary rational map f : bC ! bC of

degree d � 2; the following holds.

L
f
� minfa1; � � � ; as; b1; � � � ; bs; LA1

; � � � ; LAt
g:

The proof of this theorem will be given in Section 4.
For any � 2 S(v1; v2); it is clear by de�nition that `
(�) � 2d
(v1; v2): Similarly,

for � 2 T (v); we have `
(�) � 4�
(v): Thus, we conclude that aj(v1; v2) � 2d
(v1; v2)
and bj(v) � 4�
(v) and hence have the following

Corollary 2.3. Under the same situation as the Main Theorem, it follows that

L
f
� minfC1; C2; C3g(> 0);

where C1 = minv1 6=v22f(Crit(f)) 2d
f
(v1; v2); C2 = minv2f(Crit(f)) 4�
f

(v); and C3 =
mink=1;��� ;t LAk

: In particular, the Julia set Jf is uniformly perfect.

Remark 1. As is well-known, any polynomial has no Herman rings. In general, if
there exsits a Herman ring A; it is known that the boundary of A is contained in
the closure of forward orbits of the critical set of f: Therefore, if each critical point
of f is periodic or contained in a (super)attracting or parabolic basin, then we can
conclude that f has no Herman rings. We also note that a cycle of (super)attracting
or parabolic components always contains a critical point, thus a component of it
appears as a member of the list U1; � � � ; Us:
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Remark 2. If Ak = f l(Aj) for some 1 � j; k � t and 1 � l; then Aj and Ak belong
to the same cylce of Herman rings, thus LAj

= LAk
since fm : Aj ! Aj is known

to be analytically conjugate to an irrational rotation of a round annulus, where m is
the period of Aj: Hence, LAj

depends only on the cycle of Herman rings to which Aj

belongs.

Remark 3. A pair v1; v2 of critical values can accidentally be very close to each other
in 
; i.e., d
(v1; v2) is very small, while aj(v1; v2) is not so small. (The phenomenon
T (v) 6= ; can be considered as a limiting case of the above situation.) So, the
formulation in the above corollary does not always provide a good estimate for the
uniform perfectness.

3. Branched coverings and uniform perfectness

In this section, we shall investigate the connection between branched coverings and
uniform perfectness. Let f : U ! W be a holomorphic (possibly branched) covering
map from a (connected) hyperbolic Riemann surface U onto another W: Precisely
speaking, for each point w 2 W there exists an open neighborhood V of w satisfying
the condtion: For each component ~V of f�1(V ) there exist a natural number n � 1
and conformal homeomorphisms ' : ~V ! �r and  : V ! �rn with  (w) = 0 such
that  Æ f Æ '�1(�) = �n; where �r denotes the disk fj�j < rg:
When a loop � is freely homotopic to another �0 in U; f�� := f Æ � is freely

homotopic to f��0: Therefore, the natural homomorphism f� : CU ! CW is induced
by f so that [�] sends to [f��]:
First suppose that f is unbranched, then by the homotopy lifting property we can

see that the induced map f� is injective. And moreover `U [�] = `W [f��] because f is
a local isometry, therefore we have the next

Proposition 3.1. If f : U ! W is an unbranched holomorphic covering map, then

it is valid that LU � LW :

In the case when f is branched, we need more e�orts to estimate LU from below.
In fact, for any �nitely connected planar Jordan domain U; it is known that there
exists a branched holomorphic covering map from U onto the unit disk (so-called
the Ahlfors map), thus LU cannot be estimated by only the data of W (in this case,
LW = +1).
Let Crit(f) be the set of critical points of f and for v1; v2; v 2 f(Crit(f)) with

v1 6= v2 de�ne the curve families S(v1; v2) and T (v) by the same way as in the
previous section. And we set

a(v1; v2) = inf
�2S(v1;v2)

`W (�); b(v) = inf
�2T (v)

`W (�); and

a = inf
v1 6=v22f(Crit(f))

a(v1; v2); b = inf
v2f(Crit(f))

b(v):
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Then, the following lemma is a key step to our proof of the Main Theorem.

Lemma 3.2. For a non-trivial loop � in U such that � = f�� is contractible in W;
it follows that

`U(�) � minfa; bg:
Proof. First we show that `U [�] > 0: In fact, if `U [�] = 0 then � surrounds a puncture
of U; in other words, there exists a holomorphic injection g : �� = � n f0g ! U such
that � is freely homotopic to "n for some integer n 6= 0; where " = g(fj�j = 1=2g):
As is easily seen, f(g(��)) is a neighborhood of a puncture of W and thus � is freely
homotopic to non-zero multiple of a simple loop around the puncture in W: On the
other hand, � is contractible in W; therefore W must be conformally equivalent to
the complex plane C ; but this is impossible because W is hyperbolic.
Since `U(�) � `U [�] = `U(�0) for the closed geodesic �0 freely homotopic to �;

it suÆces to show the claim in the case � is a smooth curve. Approximating �
by another smooth curve if necessary, we may further assume that � does not pass
through any critical point. Here, we should observe `U(�) � `W (�) by the Schwarz-
Pick lemma: f ��W � �U :
Let p : �! W be a holomorphic universal covering map of W from the unit disk

� and set C = p�1(f(Crit(f))): Since � is contractible, a lift ~� : S1 ! � of � via p
is closed. Let K be the holomorphically convex hull of ~�(S1) in �: In other words,

K = � nD0; where D0 is the relatively non-compact component of � n ~�(S1) in �:
Now we will show that #(K \ C) � 2: If K \ C is an empty set, then it is

clear that � is homotopic to a point with a homotopy in W n f(Crit(f)): Since
f : U n f�1(f(Crit(f))) ! W n f(Crit(f)) is an unbranched covering map, this
homotopy can be lifted via f to a homotopy from � to a point, but this contradicts
the assumption that � is non-trivial. Next, suppose that K \C consists of one point
�0: By assumption, we note that �0 2 K n ~�(S1): Then it is not diÆcult to see that the

loop ~� is freely homotopic to "n in � n C; where " is a suÆciently small simple loop

around �0 in � n C and n is the winding number of ~� around �0: This implies that
� is freely homotopic to p�("n) in W n f(Crit(f)); therefore � is freely homotopic to
a loop Æ with f�Æ = p�("n): In particular, `U [�] � `U(Æ) and the length of Æ can be
arbitrarily small, therefore `U [�] = 0; this is not the case. Now we have proved that
#(K \ C) � 2:
Here we recall that ~� is parametrized by S1 = fz 2 C : jzj = 1g: For each � 2 R;

we denote by S� the hyperbolic segment joining ~�(1) and ~�(ei�) in �: Now we de�ne
positive numbers �+ and �� by

�� = maxf� � 0;S�u \ C = ; for all u 2 [0; �)g:
Then, by the above observation, we see that �+ + �� � 2� and if the equality occurs
we have #(S�+ \ C) � 2 since K � S

t2R St: In any case, there exist distinct two
points ~v+ and ~v� such that ~v� 2 S��� \ C: We put v� = p(~v�):
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Let u�n (n = 1; 2; � � � ) be an increasing sequence of positive numbers which con-

verges to �� for each signature, and ~�n the curve obtained from ~� by replacing its sub-
arcs ~�jI+n ; ~�jI�n by the hyperboic segments Su+n ; S�u�n ; respectively, where I

�
n denotes

the subinterval fei�;�� 2 [0; u�n ]g of S1: And set �n = p� ~�n for each n = 1; 2; � � � :
By construction, �n is freely homotopic to � in W n f(Crit(f)); and it holds that

`W (�n) = `�( ~�n) � `�( ~�) = `W (�): Let �n be the lift of �n via f determined by
�n(1) = �(1); then �n is closed and homotopic to �:
Let �0 = lim�n and � 0 = f��0: Then, we note that `W (� 0) = lim `W (�n) � `W (�):

Further, we can see that � 0 2 S(v+; v�) or � 0 2 T (v+) according to that v+ 6= v� or
not. Therefore, we can compute as follows.

`U(�) � `W (�) � `W (� 0) � minfa(v+; v�); b(v+)g � minfa; bg:

Corollary 3.3. Let f : U ! W be a holomorphic branched covering between hyper-

bolic Riemann surfaces U and W: Then it follows that

LU � minfLW ; a; bg;
where the constants a and b are as in the above.

4. Proof of the Main Theorem

Let � be a non-trivial closed curve in 
 = 
f : In order to prove our main theorem,
we should show that `
(�) � C; where C = minfa1; � � � ; as; b1; � � � ; cs; LA1

; � � � ; LAt
g:

We denote by �n the image fn Æ � = (fn)�(�) of � under the n-th iterate of f: We
note here that `
(�) � `
(�1) � `
(�2) � � � by the Schwarz-Pick lemma. Let U
be the component of 
 containing �: Then, by Sullivan's No Wandering Domains
Theorem, U is eventually periodic, i.e., D = fk(U) is a periodic component for some
integer k: As is well-known, a periodic component D is one of the following:

(1) a (super)attracting immediate basin. In this case, the sequence of curves �n is
attracted to a (super)attracting cycle (in 
), in particular, �n is contractible
in 
 for suÆciently large n:

(2) a parabolic immediate basin. In this case, a subsequence of �n is absorbed by
a simply connected attracting petal (in 
), therefore �n is contractible in 
;
too, for suÆciently large n:

(3) a Siegel disk. In this time, D is simply connected itself, thus �k is of course
contractible in D:

(4) a Herman ring.

Hence, we can conclude that if �n is non-trivial for any n; then �n is contained in
Herman ring Aj for some large n: In this case, �n is freely homotopic to a non-zero
multiple of the core curve � of Aj; thus `
(�n) � `Aj

(�) = LAj
:

In particular, we have `
(�) � LAj
� C:
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Otherwise, there exists an integer n � 0 such that �n is non-trivial while �n+1 is
trivial in 
: Since `
(�) � `
(�n); we may assume that n = 0; in other words, � is
non-trivial but � = f�(�) is contractible in 
: If f : U ! W := f(U) is unbranched
covering, a homotopy connecting � with a constant curve in W can be lifted to a
homotopy connecting � with a constant curve in U via f; thus � is contractible in
U; this is a contradiction. Therefore, f : U ! W must be branched, i.e., U = Uj
for some j = 1; � � � ; s: Now we can apply the key lemma in the previous section! By
Lemma 3.2, we have `
(�) � minfaj; bjg � C; thus the proof is now completed.

5. Applications

We now present some applications of the main result. For a rational map f : bC ! bC
of degree d � 2; we have seen that L
f

� C; where 
f denotes the Fatou set bC n Jf
and C > 0 is the constant which appears in Theorem 2.2 or Corollary 2.3.
First of all, we state a result concerning the Hausdor� dimension. The following

theorem is essentially due to J�arvi-Vuorinen [7], while a quantitative version as in
the following can be found in [12].

Theorem 5.1. The Hausdor� dimension of the Julia set Jf of a rational map f can

be estimated as

H-dim(Jf ) � log 2

log(2e
MÆ


f + 1)
� log 2

MÆ

f

+ log 3
� log 2

�2=L
f
+ log 3

:

In particular, any rational map of degree� 2 has always the Julia set of positive
Hausdor� dimension. This is a well-known fact and is also shown in [4] by the uniform
perfectness in another method.
The next theorem ensures the regularity of the Julia set in the sense of Dirichlet

(cf. [13]) by Wiener's criterion.

Theorem 5.2 (Pommerenke [9]. See also [12]). Let f be a rational map of de-

gree at least two. Then, for each point a 2 Jf and 0 < r < diamJf ; it holds that

Cap(Jf \B(a; r)) � cr; where c � 1 is a constant satisfying log 1=c �MÆ

f

+ 7 log 2;

diam stands for the Euclidean diameter, Cap the logarithmic capacity and B(a; r) is
the closed disk centered at a with radius r:

In fact, the above property characterizes the uniform perfectness of the set Jf (see
[9]). Similarly, we can state a characterization of uniform perfectness of the closed
set in terms of the Hausdor� contents [12].
Finally, we mention the esimate of the hyperbolic (or Poincar�e) metric �(z)jdzj =

�
(z)jdzj of 
 = 
f by the distance function Æ(z) = Æ
(z) = dist(z; Jf ) = infa2Jf jz�
aj; provided that 1 2 Jf : It is always true that �(z) � 1=Æ(z): On the other hand,
if 
 is simply connected, it is well-known that �(z) � 1=4Æ(z); while this kind of
inequality need not be valid in general, even in the case @
 is a perfect set. But this
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is true in our situation, indeed the validity of this inequality characterize the uniform
perfectness.

Theorem 5.3 (cf. [12]). For a rational map f of degree at least two, we set L =
L
f

: If 1 2 Jf then we have

1

4
tanhL=2 � inf

z2
f

�
f
(z)Æ
f

(z) �
p
3Lp

�2 + 4L2
:

For another applications and characterizations of uniform perfectness, see [12] and
its references.

6. Quadratic polynomials

In this section, as the simplest example, we shall consider the quadratic polynomials
f(z) = fc(z) = z2 + c and attempt to give a concrete lower bound for the uniform
perfectness constant L
f

(abbreviated by Lc) of the Jula set Jc of fc in terms of the
parameter c: (For a general rational map f; we may estimate L
f

in the similar way
as below, in principle.) For general results of the dynamics of quadratic polynomials,
the reader will �nd a good account in the book [4] by Carleson and Gamelin.
Since fc is a polynomial, the in�nity1 is a superattracting �xed point of fc: And

0 is a unique �nite critical point of fc and c is the corresponding critical value. Let
M denote the Mandelbrot set fc 2 C ; (fnc (0))n=1;2;��� is a bounded sequenceg: As is
well-known, c 2 M if and only if the Julia set Jc is connected, in which case Lc = +1
since 
 = 
c := bC nJc is simply connected, thus we have nothing to do. So we assume
that c =2 M in the sequel. In this case, the Julia set Jc is a Cantor set, therefore the
Fatou set 
c is connected. By Corollary 2.3, it is suÆcient to estimate d
(c;1); �
(c)
and �
(1) from below. To accomplish it, we may utilize the monotonicity property

of the hyperbolic metrics. If we �nd a hyperbolic domain e
 containing 
 which is
easier to estimate its hyperbolic metric, then �
 � �e
 by the Schwarz-Pick lemma.
Therefore, it holds that d
(a; b) � de
(a; b) for any a; b 2 
: On the other hand, it is
not always true that �
(a) � �e
(a); but we can avoid this diÆculty as follows. Fix
a 2 
: Let D be an arbitrary simply connected subdomain of 
 containing a; then
we have

�
(a) � inf
w2@D

d
(a; w) � inf
w2@D

de
(a; w):
The most useful (but not necessarily suÆcient) domain D is thought to be a thrice

punctured sphere, since it has been studied for a long time and its hyperbolic met-
ric can be expressed almost explicitly (see, for example, [1] and [3]). Any thrice
punctured sphere is conformally (indeed, M�obius) equivalent to the canonical one:

D0 = bC n f0; 1;1g: The following is the precise version of Landau's theorem due to
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Hempel [5]: The hyperbolic metric �0(z)jdzj of D0 satis�es

�0(z) � 1

2jzj(j log jzjj+K)
;(6.1)

where K = �(1
4
)4=4�2 = 4:3768796 � � � ; and the equality occurs if z = �1: Note that

this estimate is eÆcient only on the half plane Rez � 1
2
; otherwise we have only to

use the functional equation �0(1� z) = �0(z):
In order to �nd out a thrice punctured sphere containing 
; we have only to specify

three points a1; a2; a3 in the Julia set, for example, repelling periodic points. In our
present case, any periodic point is repelling since c =2 M: For example, �xed points
of fc are solutions of the equation: z

2 + c = z; thus (1�p1� 4c)=2: We note that if
� is in Jc; so is ��: If we selected the three points a1; a2; a3 in the Julia set, let T be
the M�obius transformation mapping a1; a2 and a3 to 0; 1 and 1; respectively. Then,
d
c

(c;1) � dbC nfa1;a2;a3g(c;1) = d0(T (c); T (1)); where d0 denotes the hyperbolic

distance in D0; however it seems impossible to estimate �
c
(c) and �
c

(1) by only
the data aj:
For simplicity, we further assume that c < �2 in the following. Set � = (1 +p
1� 4c)=2 and � = 1 � �; then these are �xed points of f = fc: Then we see that

S = [1n=1f
�n(�) � [��; �]; hence Jc � [��; �] since S = Jc:

For later convenience, we set t =
p
1� 4c � 3 > 0: Let T (z) = (���)(z+�)

(�+�)(z��) = (3 +

t)�+z
��z : Then T (1) = �(3 + t) and T (c) = � t(3+t)

4+t
: We also note that T (Jc) � [0;1]:

Using (6.1), we can calculate as

d
c
(c;1) � d0(T (c); T (1)) � 1

2
log

log(3 + t) +K

K
+

1

2

������log
log 4+t

t(3+t)
+K

K

������ :
Next, we shall estimate the injectivity radii of 
c at c and1: As a preparation, we

consider the quantity h(a) = �D0
(�a) for a > 0: First we assume that 0 < a � 1: Let

� be the domain de�ned by f� 2 H ; 0 < Im� < 1; j� � 1
2
j > 1

2
g; and � : �! H the

conformal homeomorphism from � onto the upper half plane H which maps 0; 1;1
to 1;1; 0; respectively. We denote by g : H ! � the inverse map of �: Then, as is
well-known, � is analytically continued to the universal covering map ofD0 from H by
the reection principle, in particular, 1=2Im� = �0(�(�))j�0(�)j: The map � is nothing
but the classical elliptic modular function. For a point �0 = (ei� + 1)=2 = g(1 + a) 2
g((1; 2]) (�=2 � � < �) we can see that dH (�0; g((0; 1))) � dH (�0; g((�1; 0))) and
that the shortest hyperbolic segment  connecting � and g((0; 1)) = fti; t > 0g
is contained in f� 2 �; Re� � 1

2
g: Noting that �(f� 2 �; Re� = 1

2
g) = fz 2

H ; jz � 1j = 1g; we have h(a) = �D0
(�a) = �D0

(1 + a) =
R
��

�0(z)jdzj and �� is

contained in fz 2 H ; jz�1j � 1g: Denote by � the closed curve obtained as the union
of 1 � �� and its complex conjugate, then j�j � 1 and 2h(a) =

R
� �0(z)jdzj: Note
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that jdzj � (jdrj + rjd�j)=p2; where z = rei�: Put a0 = min j�j; then by (6.1) we
have

2h(a) �
Z
�

jdzj
2jzj(� log jzj+K)

�
Z
�

jdrj+ rjd�j
2r
p
2(� log r +K)

� 2

2
p
2
log

 � log a0 +K

� log a+K

!
+

1

2
p
2

2�

� log a0 +K

� �=
p
2

� log a+K
;

because K > �:
Next, we consider the case a > 1: Since the M�obius transformation z 7! 1=z pre-

serves D0; we have h(a) = h(1=a); thus we have h(a) � �=2
p
2(log a+K): Therefore,

for any a > 0; we have

�D0
(�a) � �

2
p
2(j log aj+K)

:

Letting D = C n [0;1); we can estimate the injectivity radius of 
c at T
�1(�a) as

follows:

�
c
(T�1(�a)) = �T (
c)(�a) � inf

w2@D
d0(�a; w) = �D0

(�a) � �

2
p
2(j log aj+K)

:

Hence,

C := minf2d
c
(c;1); 4�
c

(c); 4�
c
(1)g

� min

8<:log log(3 + t) +K

K
+

������log
log 4+t

t(3+t)
+K

K

������ ;
p
2�

log(3 + t) +K
;

p
2�

log 4+t
t(3+t)

+K

9=;
=

p
2�

logm+K
;

where m = maxf3 + t; 4+t
t(3+t)

g:
By Corollary 2.3, we have proved the following: For c < �2;

L
c
�

p
2�

logm+K
;

where m = maxfp1� 4c;
p
1�4c+1p

1�4c(
p
1�4c�3)

g and K is the Hempel's constant in (6.1).

In view of Theorem 5.2, we can see that for c < �2;

H-dimJc �
p
2 log 2

�(logm +K) +
p
2 log 3

:

11



On the other hand, for a rational map f of degree d such that1 2 
f the following
inequality is known to hold and be best possible [2]:

H-dimJf � log d

logK0
;

where K0 = maxz2Jf jf 0(z)j:
In our present case, d = 2 and K0 = 2� = 1 +

p
1� 4c; thus we have

H-dimJc � log 2

log(1 +
p
1� 4c)

:

Therefore, it seems that our estimate is suÆciently good at least in case c < �2:
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